首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Copper(II) complexes of peptides containing two or three histidyl residues (Ac-HisGlyHis-OH, Ac-HisGlyHis-NHMe, Ac-HisHisGlyHis-OH and Ac-HisHisGlyHis-NHMe) have been studied by potentiometric, UV-Vis, EPR and CD spectroscopic measurements. The imidazole nitrogen atoms are described as the primary metal binding sites of all ligands resulting in the formation of various macrochelates in the pH range 4 to 7. The (Nim, N-, Nim)-co-ordinated [CuH-1L]0+ complexes were mainly detected in samples containing free carboxylates at the C-termini, whilst the [CuH-2L]-(0) complexes were the predominant species in slightly alkaline solution and their binding modes were described via 4N-co-ordination (Nim, N-, N-, Nim) in (7,5,6)-membered fused chelate rings. Deprotonation and co-ordination of the third amide nitrogens were detected above pH approximately 9 in all cases.  相似文献   

2.
Copper(ii), nickel(ii) and zinc(ii) complexes of the peptides Ac-HVVH-NH(2) and Ac-HAAHVVH-NH(2) have been studied by potentiometric, UV-vis, CD, EPR and NMR spectroscopic measurements. Both tetra and heptapeptides can form relatively stable macrochelates with copper(ii), nickel(ii) and zinc(ii) ions, in which the ligands are coordinated via the side-chain imidazole functions. Formation of the macrochelates slightly suppresses, but cannot prevent the copper(ii) and nickel(ii) ion promoted deprotonation and coordination of the amide functionalities. The overall stoichiometry of the major species is [MH(-3)L](-) with a 4N (= N(-),N(-),N(-),N(im)) coordination mode. In the case of Ac-HAAHVVH-NH(2), coordination isomers of this species can exist with a preference for copper(ii) or nickel(ii) binding at the internal histidyl residue. In the copper(ii)-Ac-HAAHVVH-NH(2) system, the presence of the two anchoring sites results in the formation of dinuclear complexes. The existence of these species requires the involvement of amide functions in metal binding. Both equilibrium and spectroscopic data support the fact that the copper(ii) ions of the dinuclear species are independent from each other providing a good chance for the formation of various mixed metal complexes. It was found that zinc(ii) is not able to significantly alter the copper(ii) binding of the heptapeptide, but it can occupy the uncoordinated histidyl sites. The formation of the copper(ii)-nickel(ii) mixed species was obtained in alkaline solutions and CD spectra suggest the statistical distribution of the two metal ions among the histidyl residues. The binding of HAAHVVH to palladium(ii) is exclusive below pH 8 and the mixed metal species of palladium(ii) and copper(ii) ions are formed only in slightly basic solutions.  相似文献   

3.
Macroscopic and microscopic protonation processes and zinc(II) complexes of a series of multihistidine peptides (Ac-HGH-OH, Ac-HGH-NHMe, Ac-HHGH-OH, Ac-HHGH-NHMe, Ac-HVGDH-NH(2), Ac-HHVGD-NH(2), Ac-HVHAH-NH(2), Ac-HAHVH-NH(2), Ac-HPHAH-NH(2) and Ac-HAHPH-NH(2)) were studied by potentiometric, NMR and ESI-MS spectroscopic techniques. Protonations of histidyl imidazole-N donor functions were not much affected by the number and location of histidyl residues, but the presence of C-terminal carboxylate groups had a significant impact on the basicities of the neighbouring histidyl sites. The formation of 2N(im) and 3N(im) macrochelates with the stoichiometry of [ZnL] was the major process in the complexation reactions of all peptides followed by the formation of hydroxo or amide bonded species. Thermodynamic stabilities of the zinc(II) complexes were primarily determined by the number of histidyl residues, but the presence of C-terminal carboxylate functions has also a significant contribution to metal binding. The stabilizing effect of the aspartyl beta-carboxylate group was also observed, but its extent is much weaker than that of the C-terminal carboxylate with a neighbouring histidyl residue. Zinc(II) promoted peptide amide deprotonation and co-ordination was observed only in the zinc(II)-Ac-HHVGD-NH(2) system above pH 8.  相似文献   

4.
The synthesis and characterization of new polydentate ligand 2-(N),2'-(N')-bis[2-(3-hydroxy-2-oxo-2H-pyridin-1-yl)acetamido]-1(N'),2(N),2'(N')-trimethyl-2,2'-diaminodiethylamine (L3) is reported. The coordination properties of L3 and of two analogous macrocyclic ligands (L1 and L2) toward Cu(II) and Zn(II) metal ions are reported. All three ligands show the 3-hydroxy-2(1H)-pyridinone (HPO) groups attached as sidearms to a polyaza fragment, which is a macrocyclic framework in the case of L1 and L2 while it is an open chain in the case of L3. The role of the polyaza fragments in preorganizing the two sidearms was investigated. The basicity of L3 and the binding properties of L1-L3 were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm(-3)). UV-vis spectra as well 1H and 13C NMR experiments were used to understand the role of the HPO and of the polyaza fragments in the stabilization of the cations. While L1 forms stable mono- and dinuclear complexes, L2 and L3 can form only mononuclear species with each of the metal ions investigated. In the main mononuclear species of L2 and L3, the two HPO moieties stabilize the M(II) in a square planar geometry due to the two oxygen atoms of each HPO. The coordination sphere of the metal is completed by adding a secondary ligand such as water molecules in the case of Cu(II) systems or OH- in the Zn(II) systems. These results are confirmed by the crystal structures of the [CuH(-1)L2]+ and [CuH(-1)L3]+ species reported herein. Two conformations of L1 can be hypothesized in the formation of the dinuclear species, as suggested by NMR experiments on the [ZnH(-2)L1] species, which shows two conformers slowly interchanging on the NMR time scale, one of which was found to be more insoluble.  相似文献   

5.
A 31-mer polypeptide, which encompasses residues 84-114 of human prion protein HuPrP(84-114) and contains three histidyl residues, namely one from the octarepeat (His85) and two histidyl residues from outside the octarepeat region (His96 and His111), and its mutants with two histidyl residues HuPrP(84-114)His85Ala, HuPrP(84-114) His96Ala, HuPrP(84-114)His111Ala and HuPrP(91-115) have been synthesised and their Cu2+ complexes studied by potentiometric and spectroscopic (UV/Vis, CD, EPR, ESI-MS) techniques. The results revealed a high Cu2+-binding affinity of all peptides, and the spectroscopic studies made it possible to clarify the coordination mode of the peptides in the different complex species. The imidazole nitrogen donor atoms of histidyl residues are the exclusive metal-binding sites below pH 5.5, and they have a preference for macrochelate structure formation. The deprotonation and metal-ion coordination of amide functions take place by increasing the pH; all of the histidines can be considered to be independent metal-binding sites in these species. As a consequence, di- and trinuclear complexes can be present even in equimolar samples of the metal ion and peptides, but the ratios of polynuclear species do not exceed the statistically expected ones; this excludes the possibility of cooperative Cu2+ binding. The species with a (N(im),N,N)-binding mode are favoured around pH 7, and their stability is enhanced by the macrochelation from another histidyl residue in the mononuclear complexes. The independence of the histidyl sites results in the existence of coordination isomers and the preference for metal binding follows the order of: His111>His96>His85. Deprotonation and metal-ion coordination of the third amide functions were detected in slightly alkaline solutions at each of the metal-binding sites; all had a (N(im),N,N,N)-coordination mode. Spectroscopic measurements also made it clear that the four lysyl amino groups of the peptides are not metal-binding sites in any cases.  相似文献   

6.
Copper(II) complexes of N-benzothiazolesulfonamides (HL1=N-2-(4-methylphenylsulfamoyl)-6-nitro-benzothiazole, HL2=N-2-(phenylsulfamoyl)-6-chloro-benzothiazole, and HL3=N-2-(4-methylphenylsulfamoyl)-6-chloro-benzothiazole) with ammonia have been synthesized and characterized. The crystal structures of the [Cu(L1)2(NH3)2].2MeOH, [Cu(L2)2(NH3)2], and [Cu(L3)2(NH3)2] compounds have been determined. Compounds and present a distorted square planar geometry. In both compounds the metal ion is coordinated by two benzothiazole N atoms from two sulfonamidate anions and two NH3 molecules. Complex is distorted square-pyramidal. The Cu(II) ion is linked to the benzothiazole N and sulfonamidate O atoms of one of the ligands, the benzothiazole N of another sulfonamidate anion, and two ammonia N atoms. We have tested the superoxide dismutase (SOD)-like activity of the compounds and compared it with that of two dinuclear compounds [Cu2(L4)2(OCH3)2(NH3)2] and [Cu2(L4)2(OCH3)2(dmso)2] (HL4=N-2-(phenylsulfamoyl)-4-methyl-benzothiazole). In vitro indirect assays show that the dimeric complexes are better SOD mimics than the monomeric ones. We have also assayed the protective action provided by the compounds against reactive oxygen species over Deltasod1 mutant of Saccharomyces cerevisiae. In contrast to the in vitro results, the mononuclear compounds were more protective to SOD-deficient S. cerevisiae strains than the dinuclear complexes.  相似文献   

7.
The basicity behavior and ligational properties of the ligand 2-((bis(aminoethyl)amino)methyl)phenol (L) toward Ni(II), Cu(II), and Zn(II) ions were studied by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, l = 0.15 mol dm-3). The anionic L-H- species can be obtained in strong alkaline solution; this species behaves as tetraprotic base (log K1 = 11.06, log K2 = 9.85, log K3 = 8.46, log K4 = 2.38). L forms mono- and dinuclear complexes in aqueous solution with all the transition metal ions examined; the dinuclear species show a [M2(L-H)2]2+ stoichiometry in which the ligand/metal ratio is 2:2. The studies revealed that two mononuclear [ML-H]+ species self-assemble, giving the dinuclear complexes, which can be easily isolated from the aqueous solution due to their low solubility. This behavior is ascribed to the fact that L does not fulfill the coordination requirement of the ion in the mononuclear species and to the capacity of the phenolic oxygen, as phenolate, to bridge two metal ions. All three dinuclear species were characterized by determining their crystal structures, which showed similar coordination patterns, where all the single metal ions are substantially coordinated by three amine functions and two oxygen atoms of the phenolate moieties. The two metals in the dinuclear complexes are at short distance interacting together as shown by magnetic measurements performed with Ni(II) and Cu(II) complexes, which revealed an antiferromagnetic coupling between the two metal ions. The [Cu2(L-H)2]2+ cation shows a phase transition occurring by the temperature between 100 and 90 K; the characterization of the compounds existing at different temperatures was investigated using X-ray single-crystal diffraction, EPR, and magnetic measurements.  相似文献   

8.
The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring groups, if more polar side chains are present in a specific sequence.  相似文献   

9.
2-Hydroxy-N-{2-[2-hydroxyethyl)amino]ethyl}benzamide (L1H?) and 2-hydroxy-N-{2-[2-hydroxybutyl)amino]ethyl}benzamide (L2H?) ligands coordinate to copper ions to give anionic metalloligands, L1Cu? and L2Cu?, after deprotonation of their amide, alcohol and phenol functions. In presence of ancillary ligands as diketones, these metalloligands react with lanthanide salts to yield tetranuclear [Cu-Ln]? complexes while in presence of lanthanide salts alone, L1Cu? gives 1D chains of tetranuclear entities linked through the Ln ions. The micro-SQUID data evidence the SMM behavior of the tetranuclear Tb complexes and the SCM behavior of the Tb chain derivative.  相似文献   

10.
New N-(3-aminopropyl) (L1, L2) and (2-cyanoethyl) (L3, L4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L1 and L2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L2 as well as with L1, but the latter exhibits mononuclear complexes with slightly higher K(ML) values while the dinuclear complexes of L2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)]3+ and [CoL3Cl]+ revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [CoL3Cl]+ complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)]3+ complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.  相似文献   

11.
The potentially pentadentate ligand 2,6-bis[N-(2'-pyridylmethyl)carbamyl]pyridine (H2L1), readily prepared from reaction of a diester of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-aminomethylpyridine (ampy), shows limited tendency to form 1:1 M:L complexes with labile metal ions, although [CuL1] and [NiL1] were observed as minor species, the latter characterized by a crystal structure analysis. A mononuclear complex formed with inert Co(III) was characterized by a crystal structure as the neutral 1:2 complex [Co(L1)(HL1)] with two ligands acting as tridentate ligands, one coordinated by the central pyridine and its two flanking deprotonated amido groups, and the other by the central pyridine, one amido and one terminal pyridine group, with the remaining poorly coordinating protonated amide remaining unbound along with other terminal pyridine groups. Fe(III) is known to form a symmetrical 1:2 complex, but that complex is anionic due to binding of all four deprotonated amido groups; the unsymmetrical neutral Co(III) complex converts into a symmetrical anionic species only on heating for hours in aqueous base in the presence of activated carbon. The most remarkable tendency of H2L1, however, is towards the formation of robust double helical complexes: a dinuclear Cu(II) complex [Cu2L1(2)] forms, as well as a trinuclear Ni(II) complex [Ni(3)(L1)2(OAc)2(MeOH)2]. Moreover, in the presence of added H2dipic, the tetranuclear complex [Cu4(L1)2(dipic)2(OH2)2] is obtained. All helical complexes have been characterized by X-ray crystal structure analyses, and all crystals feature a racemic mixture of left- and right-handed double helices stabilized by inter-ligand pi-stacking (inter-ring distances of 3.2-3.8 A) of ligands which each span several metal ions. Using the chelating ligand pentane-2,4-dione (acac), each of the two pairs of adjacent monodentate ligands in [Ni3(L1)2(OAc)2(OH2)2] have been shown to be available for substitution without destroying the helical structure, to form [Ni3(L1)2(acac)2], also characterized by a crystal structure.  相似文献   

12.
The synthesis and characterization of the new polyamino-phenolic ligand 3,3'-bis[N,N-bis(2-aminoethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) are reported. L contains two diethylenetriamine units linked by a 1,1'-bis(2-phenol) group (BPH) on the central nitrogen atom which allows two separate binding amino subunits in a noncyclic ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm-3). L behaves as a pentaprotic base and as a monoprotic acid under the experimental conditions used, yielding the H5L5+ or H-1L- species, respectively. L forms both mono- and dinuclear species with both metal ions investigated; the dinuclear species are largely prevalent in aqueous solution with a L/M(II) molar ratio of 1:2 at pH higher than 7. L shows different behavior in Cu(II) and Zn(II) binding, affecting the dinuclear species formed and the distance between the two coordinated metal ions, which is greater in the Zn(II) than in the Cu(II) dinuclear species. This difference can be attributed to the different degree of protonation of BPH which influences the angle between the phenyl rings in the two systems. In this way, it is possible to modulate the M(II)-M(II) distance by the choice M(II) and to space the two M(II) farther away than was possible with the previously synthesized ligands. L does not saturate the coordination sphere of the coordinated M(II) ions in the dinuclear species, and thus, these latter species are prone to add guests. 1H and 13C NMR experiments carried out in aqueous solution, as well as the crystal structures of the dinuclear Cu(II) and Zn(II) species formed in aqueous solution, aided in elucidating the involvement of L and BPH in Zn(II) and Cu(II) stabilization.  相似文献   

13.
The new ditopic catecholamide 3,7,11-tris-{N-[3,4-(dihydroxybenzoyl)-aminopropyl]} derivative of a 14-membered tetraazamacrocycle containing pyridine (H(6)L(1)) has been synthesized. The protonation constants of (L(1))(6-) and the stability constants of its mono-, homo- and hetero-dinuclear complexes with Fe(3+), Cu(2+) and Zn(2+) metal ions were determined at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO(3). The large overall basicity of the ligand was ascribed to the very high protonation constants of the catecholate groups, and its acid-base behaviour was correlated with the presence of tertiary nitrogen atoms and secondary amide functions. The UV-vis spectrum of the red solution of [FeL(1)](3-) complex exhibits the LMCT band of catecholate to iron(III), and its EPR spectrum revealed a typical isotropic signal of a rhombic distorted ferric centre in a high-spin state and E/D approximately 0.31, both characteristic of a tris-catecholate octahedral environment. The ligand forms with copper(II) and zinc(II) ions mono- and dinuclear protonated complexes and their stability constants were determined, except for the [ML(1)](4-) complexes as the last proton is released at very high pH. Electronic spectroscopic studies of the copper complexes revealed the involvement of catecholate groups in the coordination to the metal centre in the mono- and dinuclear copper(II) complexes. This information together with the determined stability constants indicated that the copper(II) ion can be involved in both types of coordination site of the ligand with comparable binding affinity. The EPR spectrum of [Cu(2)L(1)](2-) showed a well resolved seven-line hyperfine pattern of copper(II) dinuclear species typical of a paramagnetic triplet spin state with weak coupling between the two metal centres. Thermodynamically stable heterodinuclear complexes, [CuFeH(h)L(1)](h-1) (h = 0-3) and [CuZnH(h)L(1)](h-2) (h = 0-4), were formed as expected from a ditopic ligand having two dissimilar coordination sites. At physiological pH, the [CuFeL(1)](-) complex is formed at approximately 100%. The formation of the [CuFeH(h)L(1)](h-1) complexes in solution was supported by electronic spectroscopic measurements. The data indicated the specific coordination of each metal centre at the dissimilar sites of the ligand, the iron(III) bound to the oxygen donors of the catecholate arms and the copper(II) coordinated to the amine donors of the macrocyclic ring. The two metal centres are weakly coupled, due to the fairly large distance between them.  相似文献   

14.
The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.  相似文献   

15.
Discrete dinuclear metallo-macrocyclic complexes have been prepared from the flexible amide ligand N-6-[(3-pyridylmethylamino)carbonyl]pyridine-2-carboxylic acid (L1-CH(3)), and its more rigid analogue, N-6-[(3-pyridylamino)carbonyl]pyridine-2-carboxylic acid (L3-CH(3)). With ligands L1-CH(3) and L3-CH(3), discrete dinuclear metallo-macrocyclic complexes with the generic formula [Cu(2)(L1-CH(3))(2)(X)(2)(Y)(2)] (7, X = NO(3); 8, X = Cl, Y = H(2)O; 9, X = ClO(4), Y = CH(3)OH) and [Cu(2)(L3-CH(3))(2)(X)(2)(Y)(2)] (10, X = NO(3), Y = H(2)O; 11, X = ClO(4), Y = CH(3)OH) are obtained. For complexes 7-9, containing the more flexible link L1-CH(3), these complexes are cleft-shaped and hinged at the methylene spacer, which allows the cleft to widen and contract to accommodate different packing modes in the solid-state. In contrast, the rigid link L3-CH(3) gives near planar metallo-macrocyclic structures. These metallo-macrocyclic compounds may be useful building blocks for coordination polymers.  相似文献   

16.
Porto R  Furia E 《Annali di chimica》2007,97(3-4):187-198
The complexation of the Cu2+ ion with 2-Hydroxybenzamide (salicylamide, HL) has been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in NaCIO4 media for ionic strength ranging from 0.5 to 3 mol/dm3. The data are consistent with the formation of the complexes CuH(-1)(HL)+, CuH(-2)(HL)2, Cu2H(-2)(HL)2(2+) and CuH(-2)(HL). The minor species, Cu2H(-2)(HL)2(2+) and CuH(-2)(HL), amount to at least 20% of the total copper. Elaboration of the data according to the Specific Interaction Theory yields the constants valid in the infinite dilution reference state: [formulas: see text] and the interaction coefficients (kg/mol) of complex species with medium ions: b(L-,Na+) = 0.11 +/- 0.03; b(CuH(-1)(HL)+,NaClO4) = 0.17 +/- 0.05; b(CuH(-2)(HL)2,NaClO4) = 0.11 +/- 0.05; b(Cu2H(-2)(HL)2(2+),NaClO4) = 0.2(7) +/- 0.1; b(CuH(-2)(HL),NaClO4) = -0.0(3) +/- 0.1.  相似文献   

17.
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n]py2N4 n= 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]-py2N4 are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degrees C in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22]py2N4 show significant differences from those described previously, while [24]py2N4 has not been studied before and [26]py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [22]- to [26]-py2N4 were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving-Williams order: NiL2+ < CuL2+ > ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu2([20]py2N4)(H2O)4][Cu(H2O)6](SO4)3 x 3H2O and [Cu(2)([20]py(2)N4)(CH3CN)4][Ni([20]py2N4)]2(ClO4)8 x H2O, which are composed of homodinuclear [Cu2([20]py2N4])(H2O)4]4+ and [Cu2([20]py2N4])(CH3CN))4]4+, and mononuclear species, [Cu(H2O)6]2+ and [Ni([20]py2N4)]2+, respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in and acetonitrile in . The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) A in 1a and 2a, respectively. The mononuclear complex [Ni([20]py2N4])]2+ displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.  相似文献   

18.
The synthesis, protonation and Cu(II) coordination features of the novel azacyclophane type receptors 2,6,10,13,17,21-hexaza[22]-(2,6)-pyridinophane (L2), 2,6,9,12,15,19-hexaza[20]-(2,6)-pyridinophane (L5) and 2,6,9,12,15,19-hexaza[20]metacyclophane (L6) are presented. The protonation and Cu(II) constants are analysed and compared with the previously reported open-chain polyamines 4,8,11,15-tetrazaoctadecane-1,18-diamine (L1) and 4,7,10,13-tetraazahexadecane-1,16-diamine (L4) and of the cyclophane 2,6,10,13,17,21-hexaaza[22]paracyclophane (L3). All the systems form mono- and dinuclear complexes whose stability and pH range of existence depend on the type of hydrocarbon chains and molecular topology. The effects of the cyclic or open-chain nature and of the presence of the pyridine rings on the protonation and formation of mono- and dinuclear complexes are discussed. Stopped-flow kinetic measurements on the acid-promoted decomposition of the Cu(II) complexes have been carried out for the different systems. With respect to the decomposition of the dinuclear complexes, because the size of the macrocycles forces both metal ions to be close to each other, the release of the first ion occurs within the mixing time of the stopped-flow except for the dinuclear complexes of L2. However, the most interesting kinetic result is the observation of different kinetics of decomposition for the different mononuclear complexes formed by a given ligand. This effect is especially evident for L3 and L6 and indicates a change in the coordination mode of the ligand for the different mononuclear species. Therefore the Cu(II) ion performs a slippage motion through the macrocyclic cavity driven by pH changes. The stopped-flow experiments are an excellent tool to detect these slippage processes that may be present for the complexes with other macrocycles.  相似文献   

19.
A trianionic ligand H3L (2-hydroxy-N-(2-[[(2-hydroxyphenyl)methylene]amino]-2-methylpropyl)benzamide) with an inner N2O2 coordination site and an oxygen atom coming from an amide function not involved in this site yields monoanionic LCu- complexes that react with Ln(hfa)3 x 2H2O (hfa = hexafluoroacetylacetonato ligand) to give dinuclear Cu-Ln complexes that self-assemble into tetranuclear species, as demonstrated by the structural determination of the [LCuDy(hfa)2(dmf)2]2 complex. High-spin species are then isolated for two ferromagnetic interactions are active in the [Cu-Gd]2 entities, through the double phenoxo bridge (J = 3.2 cm(-1)) and through the single amide bridge (j = 0.54 cm(-1)). These interactions are still present in the [Cu-Tb]2 and [Cu-Dy]2 complexes which behave as single molecule magnets (SMMs), due to the introduction of anisotropic Ln ions in place of Gd ions.  相似文献   

20.
The interaction of Cu(II) with the ligand tdci (1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol) was studied both in the solid state and in solution. The complexes that were formed were also tested for phosphoesterase activity. The pentanuclear complex [Cu(5)(tdciH(-2))(tdci)(2)(OH)(2)(NO(3))(2)](NO(3))(4).6H(2)O consists of two dinuclear units and one trinuclear unit, having two shared copper(II) ions. The metal centers within the pentanuclear structure have three distinct coordination environments. All five copper(II) ions are linked by hydroxo/alkoxo bridges forming a Cu(5)O(6) cage. The Cu-Cu separations of the bridged centers are between 2.916 and 3.782 A, while those of the nonbridged metal ions are 5.455-5.712 A. The solution equilibria in the Cu(II)-tdci system proved to be extremely complicated. Depending on the pH and metal-to-ligand ratio, several differently deprotonated mono-, di-, and trinuclear complexes are formed. Their presence in solution was supported by mass, CW, and pulse EPR spectroscopic study, too. In these complexes, the metal ions are presumed to occupy tridentate [O(ax),N(eq),O(ax)] coordination sites and the O-donors of tdci may serve as bridging units between two metal ions. Additionally, deprotonation of the metal-bound water molecules may occur. The dinuclear Cu(2)LH(-3) species, formed around pH 8.5, provides outstanding rate acceleration for the hydrolysis of the activated phosphodiester bis(4-nitrophenyl)phosphate (BNPP). The second-order rate constant of BNPP hydrolysis promoted by the dinuclear complex (T = 298 K) is 0.95 M(-1) s(-1), which is ca. 47600-fold higher than that of the hydroxide ion catalyzed hydrolysis (k(OH)). Its activity is selective for the phosphodiester, and the hydrolysis was proved to be catalytic. The proposed bifunctional mechanism of the hydrolysis includes double Lewis acid activation and intramolecular nucleophilic catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号