首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Despite the increasing number of applications of molecularly imprinted polymers (MIP) in analytical chemistry, the synthesis of polymers with hemin introduced as the catalytic center to mimic the active site of peroxidase remains as a challenge. In the current work, a new type of molecularly imprinted polymer (MIP) was synthesized with 4-aminophenol (4-APh) as the template and two monomers: hemin, which acts as the catalytic center, and methacrylic acid (MAA), which is used to build the active sites. This work shows that MIP successfully mimics peroxidase. For this purpose, a flow injection analysis system coupled to an amperometric detector was investigated through multivariate analysis. The determination of 4-APh was not affected by the equimolar presence of structurally similar phenol compounds, including catechol, 4-chloro-3-methylphenol, 2-aminophenol, guaiachol, chloroguaiachol and 2-cresol, thus highlighting the good performance of the imprinted polymer. Under the optimized experimental conditions, an analytical curve covering a wide linear response range from 0.8 up to 500 μmol L−1 (r > 0.999) was obtained, and the method gave satisfactory precisions (n = 8), as evaluated via the relative standard deviation (RSD), of 4.1 and 3.2% for solutions of 4-APh of 50 and 500 μmol L−1, respectively. Recoveries of 96–111% from water samples (tap water and river water) spiked with 4-APh were achieved, thus illustrating the accuracy of the proposed system. Figure Schematic presentation of the synthesis of the MIP  相似文献   

2.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

3.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

4.
Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 μg L−1 for PNP, 0.20 μg L−1 for PAP, and 0.16 μg L−1 for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina. Figure Schematic representation of the cloud point extraction process.  相似文献   

5.
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction. Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin  相似文献   

6.
A fast and sensitive approach that can be used to detect norfloxacin in human urine using capillary electrophoresis with end-column electrochemiluminescence (ECL) detection of is described. The separation column was a 75-μm i.d. capillary. The running buffer was 15 mmol L−1 sodium phosphate (pH 8.2). The solution in the detection cell was 50 mmol L−1 sodium phosphate (pH 8.0) and 5 mmol L−1 The ECL intensity varied linearly with norfloxacin concentration from 0.05 to 10 μmol L−1. The detection limit (S/N=3) was 0.0048 μmol L−1, and the relative standard deviations of the ECL intensity and the migration time for eleven consecutive injections of 1.0 μmol L−1 norfloxacin (n=11) were 2.6% and 0.8%, respectively. The method was successfully applied to the determination of norfloxacin spiked in human urine without sample pretreatment. The recoveries were 92.7–97.9%.   相似文献   

7.
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH 9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine from both active smokers and passive smokers. Figure  相似文献   

8.
Determination of protein surface excess is an important way of evaluating the properties of biomaterials and the characteristics of biosensors. A single-molecule counting method is presented that uses a standard fluorescence microscope to measure coverage of a liquid/solid interface by adsorbed proteins. The extremely low surface excess of lysozyme and bovine serum albumin (BSA), in a bulk concentration range from 0.3 nmol L−1 (0.02 μg mL−1) to 3 nmol L−1 (0.2 μg mL−1), were measured by recording the counts of spatially isolated single molecules on either hydrophilic (glass) or hydrophobic (polydimethylsiloxane, PDMS) surfaces at different pH. The differences observed in amounts of adsorbed proteins under different experimental conditions can be qualitatively explained by the combined interactions of electrostatic and hydrophobic forces. This, in turn, implies that single-molecule counting is an effective way of measuring surface coverage at a liquid/solid interface. Figure Adsorption fraction of proteins on different surfaces changed with pH.  相似文献   

9.
A new spectrofluorimetric method was developed for the determination of trace amounts of lecithin using the ciprofloxacin (CIP)–terbium (Tb3+) ion complex as a fluorescent probe. In a buffer solution at pH=5.60, lecithin can remarkably reduce the fluorescence intensity of the CIP–Tb3+ complex at λ=545 nm. The reduced fluorescence intensity of the Tb3+ ion is proportional to the concentration of lecithin. Optimum conditions for the determination of lecithin were also investigated. The linear range and detection limit for the determination of lecithin were 1.0×10−6–3.0×10−5 mol L−1 and 3.44×10−7 mol L−1, respectively. This method is simple, practical, and relatively free of interference from coexisting substances. Furthermore, it has been successfully applied to assess lecithin in serum samples.   相似文献   

10.
A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples. Figure Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples  相似文献   

11.
A novel small-volume fiber-optic evanescent-wave absorption sensor based on the Griess–Ilosvay reaction has been developed and evaluated for nitrite determination. The sensor was constructed by inserting a decladded optical fiber into a transparent capillary to form an annular column microchannel. The Evanescent wave (EW) field produced on the optical fiber core surface penetrated into the surrounding medium and interacted with the azo dye, which was generated by the reaction of nitrite and nitrite-sensitive reagents. The detector was designed to be parallel to the axis of the optical fiber. The defined absorbance was linear with the concentration of nitrite in the range from 0.05 to 10 mg L−1, and the detection limit was 0.02 mg L−1 (3σ) with the relative standard deviation (RSD) of 2.6% (n = 8). The present sensor was successfully used to determine nitrite in real samples of mineral water, tap water, rain water, and seawater. The results were consistent with the data obtained by standard spectrophotometric method, showing potential of the proposed sensor for practical application.   相似文献   

12.
A convenient new method for the simultaneous determination of losartan potassium and hydrochlorothiazide, with minimum sample pretreatment, is described. The procedure, based on the multivariate analysis of spectral data in the 220−274 nm region by the partial least squares algorithm, is linear in the concentration range 1.06−5.70 mg L−1 for hydrochlorothiazide and 4.0−22.2 mg L−1 for losartan. It is simple, rapid and robust, allowing accurate and precise results, with drug recovery rates of 99.3 and 100.4% and relative standard deviations of 1.7 and 1.0% obtained for hydrochlorothiazide and losartan, respectively. The method was applied to the simultaneous determination of both analytes in tablets, and it provided good results which were in statistical agreement with those provided by independent HPLC analyses of the samples. The method has also been successfully applied for the construction of drug dissolution profiles of a commercial pharmaceutical preparation containing both analytes. Figure A UV-PLS method for the simultaneous determination of losartan potassium and hydrochlorothiazide in pharmaceutical tablet formulations has been developed and validated  相似文献   

13.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   

14.
A reversed-phase HPLC method has been developed for determination of twelve intact glucosinolates—glucoiberin, glucocheirolin, progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin, glucotropaeolin, glucoerucin, and gluconasturtiin—in ten traditional Chinese plants. The samples were extracted with methanol and the extracts were cleaned on an activated Florisil column. A mobile phase gradient prepared from methanol and 30 mmol L−1 ammonium acetate at pH 5.0 enabled baseline separation of the glucosinolates. Glucosinolate detection was confirmed by quadrupole time-of-flight tandem mass spectrometric analysis in negative-ionization mode. Detection limits ranged from 0.06 to 0.36 μg g−1 when 5 g of dried plant was analyzed. Recoveries of the glucosinolates were better than 85% and precision (relative standard derivation, n = 3) ranged from 5.3 to 14.6%. Analysis of the glucosinolates provided scientific evidence enabling differentiation of three pairs of easily confused plants. Figure Glucosinolates Analysis for the Differentiation of Easily-Confusing Herbs  相似文献   

15.
Enzymatically cleaved glycans from sub-milligram quantities of erythropoietin (EPO) and ovalbumin have been analyzed, without further purification, by two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy. At NMR sample concentrations below 50 μmol L−1 the major components of the oligosaccharide fractions could be distinguished by their anomeric proton chemical shift and their size-dependent diffusion coefficients. Figure 1H NMR diffusion decay curves of anomeric protons in the EPO glycan fraction  相似文献   

16.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

17.
A simple, economic, sensitive and rapid method for the determination of the pesticide diquat was described. This new method was based on the coupling of flow injection analysis methodology and direct chemiluminescent detection; to the authors’ knowledge, this approach had not been used up to now with this pesticide. It was based on its oxidation with ferricyanide in alkaline medium; significant improvements in the analytical signal were achieved by using high temperatures and quinine as sensitiser. Its high throughput (144 h−1), together with its low limit of detection (2 ng mL−1), achieved without need of preconcentration steps, permitted the reliable quantification of diquat over the linear range of (0.01–0.6) μg mL−1 in samples from different origins (river, tap, mineral and ground waters), even in the presence of a 40-fold concentration of paraquat, a pesticide commonly present in the commercial formulations of diquat. Figure Quartz luminometer cell  相似文献   

18.
With UV irradiation, Hg2+ in aqueous solution can be converted into Hg0 cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO2 more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO2-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02–0.04 μg L−1, with linear dynamic ranges up to 15 μg L−1. The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury. Image of the photo-CVG instrumentation showing the photoreactor inside the water cooling unit  相似文献   

19.
A method is described for determination of residues of the insecticide Etofenprox in environmental samples. Anionic surfactant micelle-mediated extraction (coacervation extraction) was evaluated for isolation of Etofenprox before HPLC. The optimum conditions used for extraction included: 0.09 g sodium dodecanesulfonate (SDoS), 3.1 mL (3.3, for concentrations below 0.04 mg L−1) 12 mol L−1 HCl, 5 min vortex stirring, 5 min centrifugation at 4000 rpm, 2 h equilibration time. The limits of quantification (LOQ) and detection (LOD) were 0.01 and 0.004 mg L−1, respectively, and recoveries obtained from five real samples ranged from 94.33±2.48 to 100.13±2.71%. The precision of the method was good; relative standard deviations (RSD) were less than 7%.   相似文献   

20.
Use of small membrane pumps, instead of peristaltic pumps, to introduce sample and reagent solutions into the spectrometer has several advantages in atomic fluorescence spectrometric determination of mercury. This simple modification results in a substantial saving in the time required for the measurements and so 90% of reagent solution volumes and 95% of sample solution volumes are saved, with a consequent decrease in the volume of waste generated. The sampling frequency is almost tripled, with no deterioration in sensitivity, which is similar to that obtained by use of peristaltic pumps. The relative standard deviation for ten consecutive measurements of a 1 μg L−1 mercury solution was approximately 2%. Figure Small membrane pumps for the atomic fluorescene spectro metric determination of mercury  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号