首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A two-frame PIV (particle image velocimetry) technique was used to investigate the flow characteristics of a complicated propeller wake influenced by a hull wake. As the propeller is significantly affected by the hull wake of a marine vessel, measurements of the propeller wake under the hull wake are certainly needed for more reliable validation of numerical predictions. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both the upper and the lower propeller planes. The unstable propeller wake caused by the ship’s hull was interpreted in terms of turbulent kinetic energy (T KE) to obtain useful information for flow modeling. The unstable or unsteady phenomenon in the upper propeller wake was identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure with turbulent kinetic energy. Strong unsteadiness appeared in the second and higher modes, largely affecting the downstream flow characteristics. The first eigenmode can be used to appropriately identify the tip vortex positions even in the unstable downstream region, which are helpful for establishing reliable wake modeling.  相似文献   

2.
In the present study an experimental analysis of the velocity and pressure fields behind a marine propeller, in non-cavitating regime is reported. Particle image velocimetry measurements were performed in phase with the propeller angle, to investigate the evolution of the axial and the radial velocity components, from the blade trailing edge up to two diameters downstream. In phase pressure measurements were performed at four radial and eight longitudinal positions downstream the propeller model at different advance ratios. Pressure data, processed by using slotting techniques, allowed reconstructing the evolution of the pressure field in phase with the reference blade position. In addition, the correlation of the velocity and pressure signals was performed. The analysis demonstrated that, within the near wake, the tip vortices passage is the most important contribution in generating the pressure field in the propeller flow. The incoming vortex breakdown process causes a strong deformation of the hub vortex far downstream of the slipstream contraction. This process contributes to the pressure generation at the shaft rate frequency.  相似文献   

3.
王恋舟  吴铁成  郭春雨 《力学学报》2021,53(8):2267-2278
螺旋桨尾流场的涡流特性是一个基础但又十分复杂的流体力学问题, 它的复杂性源于其蕴含复杂的漩涡系统, 且该漩涡系统会在高速的剪切层流动中不断演化, 其流体动力学行为, 如由稳定态演变为不稳定态的机理以及复杂工况环境中的流动现象, 一直是流体力学领域的难点和备受关注的热点问题. 从工程应用的角度看, 桨后梢涡的演化特性与船舶结构物的宏观特性直接相关, 更好地理解多工况下螺旋桨尾流的动力学特性, 将有助于改善与振动、噪声以及结构问题等相关的推进器性能, 对综合性能优良的下一代螺旋桨的设计和优化有着重要的现实意义. 本文基于延迟分离涡模拟、大涡模拟和无湍流模型模拟方法以及粒子图像测速流场测试分别开展了螺旋桨尾流动力学特性的数值与试验研究, 对螺旋桨尾流不稳定性的触发机理进行了揭示. 基于均匀来流中螺旋桨梢涡的演化机理, 提出了螺旋桨梢涡演化模型. 该模型能够较为准确地模拟螺旋桨梢涡的演化过程, 预测螺旋桨梢涡融合的时间和位置, 对螺旋桨流噪声预报和控制以及性能优良的螺旋桨设计具有重要意义.   相似文献   

4.
In this paper, the influence of a single tip vortex on boundary layer detachment is studied. This study offers a preliminary approach in order to better understand the interaction between a propeller hub vortex and the rudder installed in its wake. This configuration belongs to the field of marine propulsion and encompasses such specific problem as cavitation inception, modification of propulsive performances and induced vibrations. To better understand the complex mechanisms due to propeller–rudder interactions it was decided to emphasize configurations where the hub vortex is generated by an elliptical 3-D foil and is located upstream of a 2-D NACA0015 foil at high incidences for a Reynolds number of 5×105. The physical mechanisms were studied using Time Resolved Stereoscopic Particle Image Velocimetry (TR-SPIV) techniques. Particular attention was paid to the detachment at 25° incidence and a detailed cartography of the mean and turbulent properties of the wake is presented. Proper Orthogonal Decomposition (POD) analysis was applied in order to highlight the unsteady nature of the flow using phase averaging based on the first POD coefficients to characterize the turbulent and coherent process in the near wake of the rudder.  相似文献   

5.
发生在桨和舵之间的干扰会影响螺旋桨尾流的演化,导致尾流场中的湍流在下游增强,恶化船舶的振动和噪声性能,深入分析舵几何参数对桨-舵系统尾流场演化的影响能够为推进器尾流场的调节和减振降噪提供新思路.因此,从弦长、剖面和梯形舵入手分析不同的舵几何参数对螺旋桨尾流场演化特性的影响,使用大漩涡模拟方法模拟流场中的湍流结构,对不同舵弦长、剖面下的螺旋桨尾涡结构演化进行了分析,在舵弦长、剖面影响螺旋桨尾流场演化的研究的基础上分析了梯形舵对螺旋桨尾涡结构的影响,进一步分析了梯形舵影响下的螺旋桨尾流场中湍动能的分布.结果表明舵的弦长和剖面均会影响螺旋桨尾流场的演化,这种影响表现为更大的弦长和更厚的剖面会促进螺旋桨梢涡在舵压力面上的偏移,更薄的舵剖面会带来更强烈的螺旋桨毂涡偏移;涡管轮廓和舵表面脉动压力的对比均表明梯形舵会促进螺旋桨尾流场沿逆舵梯度方向偏移,从而导致螺旋桨的尾涡结构在舵两侧及下游呈现不对称分布,桨-舵系统下游的湍流结构与螺旋桨尾涡-舵碰撞过程、螺旋桨尾涡-舵随边涡干扰过程、螺旋桨梢涡-螺旋桨毂涡干扰有关,偏移更大的螺旋桨尾涡结构会在尾流场中更早地引起湍动能增强.  相似文献   

6.
Propeller tip and hub vortex dynamics in the interaction with a rudder   总被引:1,自引:0,他引:1  
In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1–11, 2006a, Exp Fluids 46(1):147–1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.  相似文献   

7.
We report wall-resolved, large-eddy simulations for the case of a propeller operating upstream of a hydrofoil, mimicking a rudder. Our primary objective is the identification of wake features that are unique to this coupled system, when compared to open-water cases, which are usually the focus of experiments and computations in the literature. We were able to achieve unprecedented levels of numerical resolution, which capture the dynamics of all energetic eddies in the flow by using a scalable, conservative, structured solver in cylindrical coordinates. The boundary conditions on the rotating propeller and hydrofoil were enforced via an immersed boundary formulation. The largest values of turbulent stresses in the wake of the hydrofoil are achieved outwards from the radial coordinate of the tip of the propeller blades. This is due to spanwise gradients across the hydrofoil (in the direction parallel to the span of the hydrofoil), producing a displacement of the pressure side legs of the tip vortices towards outer coordinates, where they experience shear with the wake of the hydrofoil. The evolution of turbulence is non-monotonic across the streamwise direction. This is a consequence of the growing shear resulting from the complex interactions involving the shear layers from the trailing edge, the tip vortices and the two branches of the hub vortex coming from the two sides of the hydrofoil. Such a shear is reinforced by the spanwise velocities developed by the two branches of the propeller wake across the hydrofoil. Compared to an isolated propeller, these phenomena enhance turbulence production. The present results highlight that a downstream hydrofoil, typical of surface ships, is able to significantly intensify the wake signature of a propeller.  相似文献   

8.
The effect of the number of blades on wake evolution was investigated on three propellers having the same blade geometry but different numbers of blades. The experiments concerned velocity measurements along nine transversal planes of the wake by LDV phase-sampling techniques. The study was performed with all the propellers having the same tip vortex intensity. In addition, high-speed visualizations were carried out to analyze the main features of propeller wake evolution in the transition and in the far wake. Aspects concerning wake evolution were pointed out, with particular emphasis on the instability mechanism of the propeller slipstream and on its correlation with the blade-to-blade interaction phenomenon.  相似文献   

9.
杨琳  郑兴 《力学学报》2022,54(11):3032-3041
涡识别是很重要的流体问题, 为了在船用螺旋桨伴流场中寻找一种合理的涡识别方法, 本文结合实践, 研究了六种涡识别技术理论, 其中使用Burgers涡流和Lamb-Oseen涡流作了必要的解释, 讨论了各种识别方法的优缺点. 局部低压标准比较直观, 但深究其黏性和非定常影响后, 明显不足; 迹线或流线显然不能满足伽利略不变性, 会使辨别变得混乱; 涡度大小需要规定其阈值, 具有一定不确定性, 且也会识别不是涡的涡片; 速度梯度张量的复特征值也会有识别不出的区域; 速度梯度张量的第二不变量标准和对称张量的第二特征值标准能更好地识别涡核, 这两种标准有时等效. 螺旋桨伴流场的数值模拟是在开源软件OpenFOAM平台上实现的, 湍流大涡模型由一种局部动态方程建模, 此模型优于动态Smagorinsky模型. 最终的结果显示: 对于船用螺旋桨伴流场中的涡, 采用速度梯度张量的第二不变量和对称张量的第二特征值的结果基本一致, 而最小压力标准、流线或迹线标准、涡度值标准和速度张量的复特征值标准都存在一定的缺陷, 不适用于船用螺旋桨伴流场中的涡识别.   相似文献   

10.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

11.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

12.
The present experimental study aims at developing a method to control the circular cylinder near wake by radial deformation and understand the underlying physics. Using an infra-red camera, we examine the temperature distribution of the near wake center line of a sinusoidal law radially deforming circular cylinder. From these measurements, the near wake is characterized by the length of the recirculation zone, the vortex formation zone length, the temperature fluctuation maximum intensity and the vortex street shedding frequency. For several deformations frequencies, we study the radial deformation influence on the near wake characteristics. It is noted that the wake structure is strongly affected by the deformation frequency. Among other things, we note the recirculation zone length reduction and the vortex formation zone length reduction when the radial vibrations are close to the “Lock-in” fundamental range. It is also noted that the variations of the vortex shedding frequency depend on the deformation frequency.  相似文献   

13.
14.
Wake vortex flow experiments are performed in a water tank where a 1:48 scaled model of a large transport aircraft A340-300 is towed at the speed of 3 and 5 ms-1 with values of the angle of attack !={2°, 4°, 8°}. Particle image velocimetry (PIV) measurements are performed in a plane perpendicular to the towing direction describing the streamwise component of the wake vorticity. The instantaneous field of view (I-FOV) is traversed vertically with an underwater moving-camera device tracking the vortex core during the downward motion. An adaptive resolution (AR) image-processing technique is introduced that enhances the PIV interrogation in terms of spatial resolution and accuracy. The main objectives of the investigation are to demonstrate the applicability of PIV diagnostics in wake vortex research with towing-tank facilities. The specific implementation of the traversing field-of-view (T-FOV) technique and the AR image processing are driven by the need to characterize the vortex wake global properties as well as the vortex decay phenomenon in the mid- and far-field. Relevant aerodynamic information is obtained in the mid-field where the time evolution of the vortex structure (core radius and tangential velocity) and of the overall vortex wake (vortex trajectory, descent velocity, circulation) are discussed.  相似文献   

15.
An immersed-boundary numerical method is applied to simulate the wake downstream of a two-dimensional heaving airfoil. A switch of vortex pattern is found to be the major reason that a deflected asymmetric wake reverses its deflection angle. Parameters of the heaving airfoil and flow that influence the onset and location of the vortex switching are discussed. While the previous literature deliberately discussed the wake deflection in the near wake region, this study shows that the deflection angle can change from the near wake to far wake regions. A cross-flow effective phase velocity is introduced to analyze the already-formed asymmetric wake behind the airfoil. A vortex dipole model and the related vortex dynamics analysis are developed to show that the change of the distance between the vortices is the primary factor that leads to the vortex pattern switching in the far wake.  相似文献   

16.
The problem of an isolated free-running propeller–rudder combination is tackled in the present paper. The activity concerns phase-averaged velocity measurements by LDV along two transversal planes of the wake, just in the front and behind the rudder. In addition, visualizations of the chordwise interaction between the tip vortex filaments and the rudder, performed using a time resolved CMOS camera, are presented. The major phenomena that affect the performance of a rudder in the race of a propeller, with special emphasis on unsteady-flow aspects, are highlighted in this paper.  相似文献   

17.
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented Φ3.2 m wind tunnel.The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine.The results show that the tip vortex first moves inward for a very short period and then moves out...  相似文献   

18.
The wake dynamics of an airfoil with a blunt and divergent trailing edge is investigated experimentally at relatively high Reynolds. The near wake topology is examined versus different levels of free stream turbulence FST and angles of attack, while the downstream wake evolution is characterized at various levels of FST. The FST is found to have a significant effect on the shapes of turbulence profiles and on the downstream location where the flow reaches its quasi-asymptotic behavior. Streamwise vortices (ribs) corresponding to spanwise variations of turbulence quantities are identified in the near wake region. Simultaneous multi-point hot-wire measurements indicate that their spatial arrangement is similar to Williamson’s (Ann Rev Fluid Mech 29:477–539, 1996) mode B laminar wake flow topology. The results suggest that the statistical spanwise distribution of ribs is independent of FST effects and angle of attack as long as the vortex shedding Strouhal number remains approximately similar.  相似文献   

19.
Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen für Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996; Schneekluth and Bertram in Ship design for efficiency and economy, 1998), the co-rotating propellers model showed a much stronger swirl in the wake of the propulsor. The anisotropy of turbulence was analyzed using the anisotropy tensor introduced by Lumley and Newman (J Fluid Mech 82(1):161–178, 1977). The invariants of the anisotropy tensor of the wake flow were computed and were plotted in the Lumley–Newman-diagram. These measurements revealed that the anisotropy tensor in the wake of ship propellers is located near to the borders of the invariant map, showing a large degree of anisotropy. They will be presented and will be discussed with respect to applications of turbulence models to predict swirling flows.  相似文献   

20.
The intrinsic physical relationship of vorticity between modes A and B in the three-dimensional wake transition is investigated.Direct numerical simulations for the flow past a square-section cylinder are carried out at Reynolds numbers of 180 and 250,associated with modes A and B,respectively.Based on the analysis of spacial distributions of vorticity in the near wake,characteristics of the vertical vorticity in modes A and B are identified.Moreover,the relationship of three vorticity components with specific signs is summarized into two sign laws,as intrinsic physical relationships between two instability modes.By the theory of vortex-induced vortex,such two sign laws confirm that there are two and only two kinds of vortex-shedding patterns in the near wake,just corresponding to modes A and B.In brief,along the free stream direction,mode A can be described by the parallel shedding vertical vortices with the same sign,while mode B is described by the parallel shedding streamwise vortices with the same sign.Finally,it is found out that the|-type vortex is a basic kind of vortex structure in both modes A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号