首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel two‐dimensional coordination polymer, poly[[μ2‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)propane]di‐μ4‐iodido‐di‐μ3‐iodido‐silver(I)], [Ag4I4(C11H16N4)]n, (I), has been synthesized by solvothermal reaction of AgNO3, KI and 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)propane (bmimp). In (I), the two unique AgI cations have AgNI3 and AgI4 four‐coordinated tetrahedral geometries. The bmimp ligand has imposed twofold symmetry. The AgI cations and iodide anions form a unique one‐dimensional polymeric column motif incorporating [Ag6I6] hexagonal prisms, which are then connected by bmimp ligands to form two‐dimensional organic–inorganic layers. The layers are arranged in parallel in an ABAB fashion and are packed into the resultant three‐dimensional supramolecular framework by van der Waals interactions.  相似文献   

2.
The three‐dimensional coordination polymer poly[[bis(μ3‐2‐aminoacetato)di‐μ‐aqua‐μ3‐(naphthalene‐1,5‐disulfonato)‐hexasilver(I)] dihydrate], {[Ag6(C10H6O6S2)(C2H4NO2)4(H2O)2]·2H2O}n, based on mixed naphthalene‐1,5‐disulfonate (L1) and 2‐aminoacetate (L2) ligands, contains two AgI centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five‐coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal–bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four‐coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four‐coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one‐dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two‐dimensional layer, and the layers are further bridged by L1 anions to generate a novel three‐dimensional framework. Moreover, hydrogen‐bonding interactions consolidate the network.  相似文献   

3.
The title compound, {[Ag(C13H14N2)](C10H6O6S2)0.5·2H2O}n, (I), features a three‐dimensional supramolecular sandwich architecture that consists of two‐dimensional cationic layers composed of polymeric chains of silver(I) ions and 1,3‐bis(4‐pyridyl)propane (bpp) ligands, linked by Ag...Ag and π–π interactions, alternating with anionic layers in which uncoordinated naphthalene‐1,5‐disulfonate (nds2−) anions and solvent water molecules form a hydrogen‐bonded network. The asymmetric unit consists of one AgI cation linearly coordinated by N atoms from two bpp ligands, one bpp ligand, one half of an nds2− anion lying on a centre of inversion and two solvent water molecules. The two‐dimensional {[Ag(bpp)]+}n cationic and {[(nds)·2H2O]2−}n anionic layers are assembled into a three‐dimensional supramolecular framework through long secondary coordination Ag...O interactions between the sulfonate O atoms and AgI centres and through nonclassical C—H...O hydrogen bonds.  相似文献   

4.
A novel supramolecular framework, catena‐poly[[[aqua(2‐phenylquinoline‐4‐carboxylato‐κO)silver(I)]‐μ‐4,4′‐bipyridine‐κ2N:N′] dihydrate], {[Ag(C16H10NO2)(C10H8N2)(H2O)]·2H2O}n, has been synthesized and structurally characterized. The AgI centres are four‐coordinated and bridged by 4,4′‐bipyridine (4,4′‐bipy) ligands to form a one‐dimensional Ag–bipy chain. The Ag–bipy chains are further linked together by intermolecular O—H...O and O—H...N hydrogen‐bonding interactions between adjacent chains, resulting in a three‐dimensional framework.  相似文献   

5.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

6.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

7.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

8.
This study presents new coordinating modes of a Schiff base with three coordinating groups and an interesting two‐dimensional framework based on two types of constructing units. In the title compound, {[Ag(C14H10N4O)]ClO4}n, the AgI ion is coordinated by three N atoms and one O atom from three different N′‐(4‐cyanobenzylidene)isonicotinohydrazide (L) ligands, forming a primary distorted square‐planar coordination geometry. Two ligands each bridge two metal centres through one carbonitrile N atom in a monodentate mode and the hydrazide N and O atoms in a bidentate mode to form a small centrosymmetric (2+2)‐Ag2L2 ring as a principal constructing unit. The pyridyl N atoms from four ligands in four of these small rings coordinate to Ag atoms in adjacent rings to form a large hexanuclear silver grid. A two‐dimensional framework of rectangular grids is constructed from these small rings and large grids. Two perchlorate anions are located in each large grid and are bound to the grid by N—H...O hydrogen bonding. Crosslinking between the layers is achieved through long Ag...O interactions between the perchlorate anions and Ag atoms in adjacent layers.  相似文献   

9.
The structure of the title compound, poly[[[μ3N′‐(3‐cyanobenzylidene)nicotinohydrazide]silver(I)] hexafluoroarsenate], {[Ag(C14H10N4O)](AsF6)}n, at 173 K exhibits a novel stair‐like two‐dimensional layer and a three‐dimensional supramolecular framework through C—H...Ag hydrogen bonds. The AgI cation is coordinated by three N atoms and one O atom from N′‐(3‐cyanobenzylidene)nicotinohydrazide (L) ligands, resulting in a distorted tetrahedral coordination geometry. The organic ligand acts as a μ3‐bridging ligand through the pyridyl and carbonitrile N atoms and deviates from planarity in order to adapt to the coordination geometry. Two ligands bridge two AgI cations to construct a small 2+2 Ag2L2 ring. Four ligands bridge one AgI cation from each of four of these small rings to form a large grid. An interesting stair‐like two‐dimensional (3,6)‐net is formed through AgI metal centres acting as three‐connection nodes and through L molecules as tri‐linkage spacers.  相似文献   

10.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   

11.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

12.
The title complex, [Ag2(C7H5O2)2(C18H18F2N2)]n, is a dinuclear silver(I) compound with one inversion centre between pairs of Ag atoms and another at the mid‐point of the central C—C bond in the butane‐1,4‐diamine moiety. Each of the smallest repeat units consists of two silver(I) cations, two benzoate anions and one N,N′‐bis(2‐fluorobenzyl­idene)­butane‐1,4‐di­amine Schiff base ligand. Each AgI ion is three‐coordinated in a trigonal configuration by two O atoms from two benzoate anions and one N atom from a Schiff base ligand. The di‐μ‐benzoato‐disilver(I) moieties are linked by the bridging Schiff base ligand, giving zigzag polymeric chains with an [–Ag⋯Ag—N—C—C—C—C—N–]n backbone running along the b axis.  相似文献   

13.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

14.
The title compound, {[Ag(C4H6NO4)(C4H5N3)]·H2O}n, was synthesized by the reaction of silver(I) nitrate with 2‐aminopyrimidine and iminodiacetic acid. X‐ray analysis reveals that the crystal structure contains a one‐dimensional ladder‐like AgI coordination polymer and that N—H...O and O—H...O hydrogen bonding results in a three‐dimensional network. The AgI centre is four‐coordinated by three N atoms from three different 2‐aminopyrimidine ligands and one O atom from one iminodiacetate ligand. Comparison of the structural features with previous findings suggests that the existence of a second ligand plays an important role in the construction of such polymer frameworks.  相似文献   

15.
In the mixed‐metal complex catena‐poly[bis[diaquasilver(I)] [bis[aquacopper(II)]‐μ3‐pyridine‐2,5‐dicarboxylato‐2′:1:1′κ5N,O2:O5:O5,O5′‐μ‐pyridine‐2,5‐dicarboxylato‐2:1κ4N,O2:O5,O5′‐disilver(I)‐μ3‐pyridine‐2,5‐dicarboxylato‐1:1′:2′′κ5O5,O5′:O5:N,O2‐μ‐pyridine‐2,5‐dicarboxylato‐1′:2′′′κ4O5,O5′:N,O2] hexahydrate], {[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2O}n, a square‐pyramidal CuII center is coordinated by two N atoms and two O atoms from two pyridine‐2,5‐dicarboxylate (2,5‐pydc) ligands and a water molecule, forming a [Cu(2,5‐pydc)2(H2O)]2− metalloligand. One AgI center is coordinated by five O atoms from three 2,5‐pydc ligands and, as a result, the [Cu(2,5‐pydc)2(H2O)]2− metalloligands act as linkers in a unique μ3‐mode connecting AgI centers into a one‐dimensional anionic double chain along the [101] direction. The other AgI center is coordinated by two water molecules, forming an [Ag(H2O)2]+ cation. Four adjacent AgI centers are associated by Ag...Ag interactions [3.126 (1) and 3.118 (1) Å], producing a Z‐shaped Ag4 unit along the [010] direction and connecting the anionic chains into a two‐dimensional layer structure. This study offers information for engineering mixed‐metal complexes based on copper(II)–pyridinedicarboxylate metalloligands.  相似文献   

16.
In the present work, the two‐dimensional (2D) polymer poly[[μ4‐2‐(4‐nitrobenzenesulfonamido)benzoato‐κ4O1:O1:O1′:N6]silver(I)] (AgL), [Ag(C13H9N2O6S)]n, was obtained from 2‐(4‐nitrobenzenesulfonamido)benzoic acid (HL), C13H10N2O6S. FT–IR, 1H and 13C{1H} NMR spectroscopic analyses were used to characterize both compounds. The crystal structures of HL and AgL were determined by single‐crystal X‐ray diffraction. In the structure of HL, O—H…O hydrogen bonds between neighbouring molecules result in the formation of dimers, while the silver(I) complex shows polymerization associated with the O atoms of three distinct deprotonated ligands (L?). Thus, the structure of the Ag complex can be considered as a coordination polymer consisting of a one‐dimensional linear chain, constructed by carboxylate bridging groups, running parallel to the b axis. Neighbouring polymeric chains are further bridged by Ag—C monohapto contacts, resulting in a 2D framework. Fingerprint analysis of the Hirshfeld surfaces show that O…H/H…O hydrogen bonds are responsible for the most significant contacts in the crystal packing of HL and AgL, followed by the H…H and O…C/C…O interactions. The Ag…Ag, Ag…O/O…Ag and Ag…C/C…Ag interactions in the Hirshfeld surface represent 12.1% of the total interactions in the crystal packing. Studies of the interactions of the compounds with human serum albumin (HSA) indicated that both HL and AgL interact with HSA.  相似文献   

17.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

18.
The bifunctional pyridine‐2,3‐dicarboxylic acid (H2pdc) ligand has one N atom and four O atoms, which could bind more than one AgI centre with diverse binding modes. A novel infinite one‐dimensional AgI coordination polymer, namely catena‐poly[[silver(I)‐(μ2‐pyridine‐2,3‐dicarboxylato‐κ2N :O 3)‐silver(I)‐tris(μ2‐5‐methyl‐1,3,4‐thiodiazol‐2‐amine‐κ2N :N ′)] monohydrate ethanol monosolvate], {[Ag2(C7H3NO4)(C3H5N3S)3]·H2O·C2H5OH}n , has been synthesized using H2pdc and 5‐methyl‐1,3,4‐thiadiazol‐2‐amine (tda), and characterized by single‐crystal X‐ray diffraction. One AgI atom is located in a four‐coordinated AgN4 tetrahedral geometry and the other AgI atom is in a tetrahedral AgN3O geometry. A dinuclear AgI cluster formed by three tda ligands with a paddelwheel configuration is bridged by the dianionic pdc2− ligand into a one‐dimensional coordination polymer. Interchain N—H…O hydrogen bonds extend the one‐dimensional chains into an undulating two‐dimensional sheet. The sheets are further packed into a three‐dimensional supramolecular framework by interchain N—H…O hydrogen bonds.  相似文献   

19.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   

20.
The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4‐aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The AgI centre is four‐coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two AgI‐centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O–O edge. 4‐Aminophenylarsonate (Hapa) adopts a μ3‐κ3N:O:O‐tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (10) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R22(8) hydrogen‐bonded dimer involving two arsonate groups from two Hapa ligands related by a centre of inversion. Additionally, there are hydrogen‐bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa ligands, and weak π–π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two‐dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号