首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Stir bar sorptive extraction (SBSE) and thermal desorption followed by capillary gas chromatography coupled to mass spectrometry (SBSE-TD-GC-MS) was applied to the simultaneous determination of ultra-traces of 16 polycyclic aromatic hydrocarbons (PAHs), 12 polychlorinated biphenyls (PCBs), 6 phthalate esters (PEs) and 3 nonylphenols (NPs) in water samples. The parameters that could affect the sorption-desorption efficiency were studied. A Plackett-Burman design was used for the screening of the main effects of the experimental parameters related to the desorption step (desorption time, desorption temperature, desorption flow, cryo-focusing temperature and vent pressure). Afterwards, two central composite designs were used to find the optimal process settings for the extraction and desorption steps. The best analytical compromise conditions for the simultaneous determination of analytes from spiked water samples were found to be: sample volume (20 mL), sodium chloride addition (30%), methanol addition (20%), desorption time (10 min), desorption temperature (300 degrees C), desorption flow (23 mL min(-1)), cryo-focusing temperature (-50 degrees C) and vent pressure (7 psi). Remarkable recovery, repeatability and reproducibility were attained. Furthermore, excellent linearities (r(2) = 0.959-0.999) and low detection limits (0.1-10 ng L(-1)) were also achieved for the congeners studied. The proposed methodology was applied for the simultaneous determination of PAHs, PCBs, PEs and NPs in sea and estuarine waters. The influence of humic acids on the recovery was also studied.  相似文献   

2.
Focused ultrasonic solid-liquid extraction (FUSLE) has been optimised for simultaneous analysis of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), and nonylphenols (NPs) in sediment samples. Optimisation was performed using naturally polluted freeze-dried sediment samples. The variables studied during the optimisation process were: percentage of maximum power (10-60%), extraction time (10-300 s), number of cycles (1-9), composition of the extraction solvent (acetone-n-hexane, 10:90-90:10), and sample mass (0.1-1 g). The volume of the extractant was constant (10 mL) and the extraction was performed at 0 degrees C in an ice-bath during the optimisation process. All these variables were studied using an experimental design approach by means of The Unscrambler software. The extraction time and the operational variables (number of cycles and power) had no statistically significant effect in the extraction and they were held at 2 min, 20% power, and seven cycles, respectively. The mass and the addition of non-polar solvent (n-hexane) had a negative effect in the extraction yield and, thus, the mass was held at 0.5 g and pure acetone was used as extraction solvent. After those variables were optimised, the effect of the extraction temperature (0 degrees C or room temperature) was also studied. The validation of the extraction method was performed using NIST-1944 reference material in the case of PAHs and PCBs. Because no certified reference sediment is available for PEs and NPs, the results obtained for FUSLE were compared with those obtained for microwave-assisted extraction (MAE) under conditions optimised elsewhere. In all the cases the analysis were performed by gas chromatography-mass spectrometry (GC-MS). Good accuracy were achieved in all cases. The limits of detection (LODs) obtained were between 0.10 and 1.70 ng g(-1) for PAHs (except for naphthalene 5.33 ng g(-1)), 0.02 and 0.16 ng g(-1) for PCBs, 46 and 188 ng g(-1) for PEs, and 0.6 and 12.4 microg g(-1) for NPs. The precision was around 5-10% for most of the PAHs and PCBs and around 2-10% for most of the PEs and NPs.  相似文献   

3.
A new method was developed for the simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), nonylphenols (NPs) and nonylphenol mono- and diethoxylates (NP1EOs and NP2EOs, respectively) in sediment samples by means of a closed microwave system. The extractions were carried out at 21 psi and 80% of microwave power and 15 ml of acetone were used as the common extraction solvent. The filtered extract was further fractionated in two groups using Florisil cartridges: PAHs and PCBs were eluted with n-hexane:toluene (4:1) and the PEs, NPs and ethoxylates were eluted with ethyl acetate. All the compounds were analysed by gas chromatography-mass spectrometry (GC-MS). In case of PAHs and PCBs, the developed method was validated by comparison of the results obtained for the certified reference material NIST 1944 with the certified values. In the absence of a reference material for phthalate esters and nonylphenols, one sediment sample was extracted twice under the optimal conditions in order to check than an exhaustive extraction of the analytes occurred. This method is currently used in the study of the distribution of those organic contaminants in the estuaries of the Bay of Biscay (Spain).  相似文献   

4.
A technique of ultrasound-assisted low density solvent based dispersive liquid-liquid microextraction was developed for the determination of four phthalate esters, including dimethyl phthalate(DMP), diethyl phthalate(DEP), di-n-butyl phthalate(DnBP) and di(2-ethylhexyl) phthalate(DEHP) in bottled water samples. A low density solvent, toluene, was selected as extraction solvent. In the extraction process, a mixture of 15 μL of toluene(extraction solvent) and 100 μL of methanol(disperser solvent) was rapidly injected into 1.0 mL of water samples. A cloudy solution was formed after ultrasounded for 5 min, and then centrifuged at 5000 r/min for 5 min. The enriched analytes in the floating phase were determined by means of gas chromatograph. Under the optimum conditions, the enrichment factors were found to be in a range of 29-67, and the recoveries were ranged from 81.2% to 103.9%. The limits of the detection were in a range of 3.8-5.6 μg/L. The proposed method was applied to the extraction and determination of phthalate esters in bottled water samples, and the concentrations of phthalate esters found in the water samples were below the allowable levels.  相似文献   

5.
Headspace solid-phase microextraction was optimised for the simultaneous preconcentration of methylmercury (MeHg+), monobutyltin, dibutyltin, tributyltin, monophenyltin (MPhT), diphenyltin (DPhT), and triphenyltin (TPhT) from sediments and biota. Extraction time (3-24 min), extraction temperature (20-90 degrees C), desorption time (1-10.4 min), desorption temperature (152-260 degrees C), and sample volume (5-22 mL) were simultaneously optimised, while variables such as fibre type (30 microm polydimethylsiloxane, PDMS), pH (acetic acid/sodium acetate, HOAc/NaOAc, 2 mol/L, pH approximately 4.8), the concentration of the derivatisation agent (sodium tetraethylborate, NaBEt4, 0.1% m/v), and the ionic strength (fixed by the buffer solution) were kept constant. The variables were optimised according to the experiments proposed by the MultiSimplex program and the responses were considered in order to establish the optimum conditions. The repeatability (relative standard deviation, RSD, 5-20.6%) and limits of detection (LODs, 0.05-0.97 ng/g) of the overall method were also estimated. The lowest precisions were obtained for DPhT and TPhT. The optimised preconcentration method was applied to the determination of MeHg+), butyl- and phenyltins in certified reference materials (IAEA-405 MeHg+) in estuarine sediment, BCR-646 butyl- and phenyltins in marine sediment, BCR-463 MeHg+ in tuna fish, DOLT-2 MeHg+ in dogfish liver, and BCR-477 butyltins in mussel tissue) by GC with microwave-induced plasma/atomic-emission detection.  相似文献   

6.
Fu S  Ding L  Zhu S  Jiao Y  Gong Q  Chen J  Wang L 《色谱》2011,29(8):737-742
建立了磁性多壁碳纳米管(MWCNTs)固相萃取结合气相色谱-质谱检测水样中13种邻苯二甲酸酯类化合物(PAEs)的方法。优化了萃取时间、水样pH值、解吸溶剂的种类和用量、解吸时间等影响萃取效率的主要条件。最终确定萃取时间为10 min,水样pH 5~7,解吸溶剂为2 mL丙酮,解吸时间为5 min。在优化的条件下,各组分的萃取回收率为89.7%~100.5%。方法具有较高的灵敏度,检出限(信噪比(S/N)为3)为0.08~0.47 μg/L。3种实际样品的加标回收率为84.5%~107.5%,相对标准偏差为1.9%~12.8%。该方法操作简便、省时,准确、灵敏、环保,可用于水样中PAEs的检测,并成功地应用于自来水、瓶装饮用水和湖水样品的分析,13种PAEs均未检出。  相似文献   

7.
A solid-phase microextraction method (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) has been developed for the determination of the six phthalate esters included in the US Environmental Protection Agency (EPA) Priority Pollutants list in water samples. These compounds are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP). Detailed discussion of the different parameters, which could affect the extraction process, is presented. Main factors have been studied and optimized by means of a multifactor categorical design. Different commercial fibers, polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), polyacrylate (PA), Carboxen-polydimethylsiloxane (CAR-PDMS) and Carbowax-divinylbenzene (CW-DVB), have been investigated, as well as the extraction mode, exposing the fiber directly into the sample (DSPME) or into the headspace over the sample (HS-SPME), and different extraction temperatures. The use of this experimental design allowed for the evaluation of interactions between factors. Extraction kinetics has also been studied. The optimized microextraction method showed linear response and good precision for all target analytes. Detection limits were estimated considering the contamination problems associated to phthalate analysis. They were in the low pg mL(-1), excluding DEHP (100 pg mL(-1)). The applicability of the developed SPME method was demonstrated for several real water samples including mineral, river, industrial port and sewage water samples. All the target analytes were found in real samples. Levels of DEP and DEHP were over 1 ng mL(-1) in some of the samples.  相似文献   

8.
This paper demonstrates, for the first time, that adsorptive potential of bamboo charcoal for solid-phase extraction of phthalate esters was investigated. The four phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP) and di-n-butyl phthalate (DBP), are quantitatively adsorbed on a bamboo charcoal packed cartridge, then the analytes retained on the cartridge are quantitatively desorbed with optimum amounts of acetone. Finally, the analytes in the eluant acetone are determined by high-performance liquid chromatography-ultraviolet detectior. Important parameters influencing the extraction efficiency, such as eluant and its volume, flow rate of sample, sample volume, pH, the amount of adsorbent and ionic strength were investigated and optimized in detail. Under the optimum conditions, the limits of detection were 0.35-0.43 microg/L for four phthalate esters. The proposed method has been applied to the analysis of rainwater and tap water samples. And satisfactory spiked recoveries were obtained in the range of 75.0-114.2%. All the results indicated that the bamboo charcoal has great potential as a novel adsorbent material for the enrichment and determination of phthalate esters in real environmental water samples.  相似文献   

9.
In this article, a new method for simultaneous determination of six phthalate esters was developed by a combination of electrospun nylon6 nanofibers mat‐based solid phase extraction with high performance liquid chromatography‐ultraviolet detector (HPLC‐UV). The six phthalate esters were dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP), di‐n‐butyl phthalate (DBP), di‐(2‐ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP). Under optimized conditions, all target analytes in 50 mL environmental water samples could be completely extracted by 2.5 mg nylon6 nanofibers mat and eluted by 100 µL solvent. Compared with C18 cartridges solid phase extraction, C18 disks solid phase extraction and national standard method (China), nylon6 nanofibers mat‐based solid phase extraction was advantageous in aspects of simple and fast operation, low consumption of extraction materials and organic solvents. The four methods were applied to analysis of environment water samples. All the results indicated that the determination values of target compounds with the proposed method were consistent with C18 cartridges and C18 disks solid phase extraction method, and the new method was better than the national standard method in aspects of recovery, LOD and precision. Therefore, nylon6 nanofibers mat has great potential as a novel material for solid phase extraction.  相似文献   

10.
Stir bar sorptive extraction (SBSE) followed by HPLC-fluorescence detection (FLD) was optimised for analysing 15 polycyclic aromatic hydrocarbons (PAHs) from water samples, especially rainfall water with low PAH content. The literature data described widely different experimental conditions for the extraction of PAHs by SBSE. A chemometric approach was therefore used to evaluate the statistically influential and/or interacting factors, among those described in the literature, and to find the best extraction and desorption conditions. Among six factors studied in a 2(6-2) fractional factorial design, only sample volume, extraction time and the interaction between both of them had significant effects on the PAH extraction recoveries. Optimal sample volume of 10 mL and extraction time of 140 min were obtained with a response surface design. For the desorption conditions, a Box-Behnken design showed that desorption time, temperature and PAH concentrations had significant effects. The best conditions were two successive desorptions with 100 microL of acetonitrile for 25 min at 50 degrees C. The optimised method was repeatable (RSD< or =5.3% for 50 ng L(-1) spiked water and < or =12.8% for 5 ng L(-1) spiked water), linear (R(2)> or =0.9956), with quantitative absolute recoveries (> or =87.8% for 50 ng L(-1) spiked water), and with the LOD between 0.2 and 1.5 ng L(-1). The optimised method was successfully applied to six-rainfall water samples collected in a suburban area. The total PAHs concentrations studied ranged from 31 to 105.1 ng L(-1). Seasonal variation was observed and on average three PAHs were at the highest concentrations (phenanthrene, fluoranthene and pyrene).  相似文献   

11.
A simple, rapid and efficient method, the dispersive liquid-liquid microextraction (DLLME) in conjunction with gas chromatography-mass spectrometry (GC-MS), has been developed for the extraction and determination of phthalate esters (dimethyl phthalate, diallyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate and di-2-ethylhexyl phthalate) in water samples. Factors relevant to the microextraction efficiency, such as the kind of extraction, the disperser solvent and their volume, the salt effect and the extraction time were investigated and optimized. Under the optimized extraction conditions (extraction solvent: chlorobenzene, volume, 9.5microL; disperser solvent: acetone, volume, 0.50mL, without salt addition and extraction time below 5s), the figures of merit of the proposed method were evaluated. The values of the detection limit of the method were in the range of 0.002-0.008microgL(-1), while the RSD% value for the analysis of 1microgL(-1) of the analytes was below 6.8% (n=4). A good linearity (0.9962>/=r(2)>/=0.9901) and a broad linear range (0.02-100microgL(-1)) were obtained. The method exhibited enrichment factors and recoveries, ranging from 681 to 889 and 68.1 to 88.9%, respectively, at room temperature (25+/-1 degrees C). Finally, the proposed method was successfully utilized for the preconcentration and determination of the phthalate esters in different real water samples and satisfactory results were obtained.  相似文献   

12.
Ultrasound-assisted emulsification microextraction with solidification of floating organic droplet (USAEME-SFO) followed by high performance liquid chromatography-diode array detection (HPLC-DAD), was applied for preconcentration and determination of phthalate esters in cosmetic and water samples. The effects of different variables on the extraction efficiency were studied simultaneously using an experimental design. The variables of interest in the USAEME-SFO were extraction solvent volume, salt effect, extraction time and centrifugation time. A factorial experimental design was employed for screening to determine the variables significantly affecting the extraction efficiency. Then, the significant factors were optimized by using a Box-Behnken design (BBD) and the response surface equations were derived. The optimum experimental conditions were extraction solvent volume, 30 μL; sodium chloride concentration, 20% (w/v); extraction time, 12 min and centrifugation time, 5 min. Under optimal conditions, the preconcentration factors were between 355 and 409. The limit of detections (LODs) ranged from 0.005 μg L−1 (for Diethylphthalate) to 0.01 μg L−1 (for Dimethylphthalate). Dynamic linear ranges; (DLRs) of 0.05-800 and 0.05-1000 μg L−1 were obtained for Diisobutyl- and Dimethylphthalate, respectively. The performance of the method was evaluated for extraction and determination of phthalate esters in cosmetic and environmental water samples in micrograms per liter and satisfactory results were obtained (RSDs < 12.6%).  相似文献   

13.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

14.
This study describes a new approach to cold-fiber solid-phase microextraction (CF-SPME) based on a combination of different extraction modes in the same extraction procedure. Also, the high quantity of water required to facilitate both the desorption of analytes from the matrix and their transport to the fiber coating is reported. The extraction mode was changed from the direct to the headspace mode in a single extraction while manipulating the extraction times and coating temperature to improve the extraction of compounds with different volatilities. Compounds with low volatility were better extracted in the direct mode, while the headspace mode was more appropriate for volatile compounds. Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PEs) in sand or soil samples were used as model compounds and matrices in this study. The optimized conditions were: sample pH in the range of 4-7, addition of 12 mL of 194 g L(-1) aqueous NaCl solution in a 15 mL vial, and 80 min total extraction time with a sample temperature of 90°C (50 min in direct mode with coating at 90°C followed by 30 min in headspace mode with coating at 30°C). The proposed procedure was compared with conventional CF-SPME (with and without addition of water) and was found to be more effective for all the analytes, since it is capable of extracting both heavier and lighter compounds from soil samples in a single extraction procedure. The use of an excess of water and a combination of extraction modes in the same CF-SPME procedure are the main factors responsible for this enhancement. The proposed method was applied to the extraction of PAHs and PEs in spiked soil samples and excellent results were obtained for most of the compounds evaluated.  相似文献   

15.
Solid phase extraction (SPE) with appropriate solid sorbents has been commonly used in the routine extraction of organic pollutants in water. The elution of analytes from the solid sorbents normally takes place by organic solvents under an applied vacuum. In this study, a microwave-assisted solvent elution technique was developed for the elution of analytes from C18 membrane disks during microwave irradiation from a microwave extraction system (MES). Several parameters, namely, elution solvent, elution temperature, duration of elution and the volume of solvent which may affect the elution efficiency of microwave-assisted solvent elution (MASE) technique towards organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), organophosphorus pesticides (OPs), fungicides, herbicides and insecticides from the membrane disk were investigated. Good recoveries above 75% were obtained for most of the organic pollutants using the optimum SPE-MASE technique. The effect of sodium chloride and humic acid on the recoveries on the target analytes were also investigated.  相似文献   

16.
固相萃取-气相色谱-质谱法测定食品中23种邻苯二甲酸酯   总被引:9,自引:0,他引:9  
Zheng X  Lin L  Fang E  Huang Y  Zhou S  Zhou Y  Zheng X  Xu D 《色谱》2012,30(1):27-32
建立了同时检测食品中23种邻苯二甲酸酯类化合物的固相萃取-气相色谱-质谱(GC-MS)分析方法。样品经正己烷或乙腈提取、玻璃ProElut PSA固相萃取柱净化,GC-MS选择离子监测模式(SIM)测定。考察了不同种类食品的提取、净化方法。23种邻苯二甲酸酯的线性范围除邻苯二甲酸二异壬酯(DINP)和邻苯二甲酸二异癸酯(DIDP)为0.5~5 mg/L外,其余均为0.05~5 mg/L,相关系数(r)除DIDP外均大于0.99。方法的检出限(信噪比为3)为0.005~0.05 mg/kg,定量限(信噪比为10)为0.02~0.2 mg/kg。在10种食品基质中3个加标水平的平均回收率为77%~112%,相对标准偏差(RSD,n=6)为4.1%~12.5%。该方法稳定、可靠,操作简单,适用于食品中邻苯二甲酸酯类化合物的检测与确证。  相似文献   

17.
This paper describes the development and validation of a new procedure for the simultaneous determination of 41 multi-class priority and emerging organic pollutants in water samples using microextraction by packed sorbent (MEPS) followed by large volume injection–gas chromatography–mass spectrometry (LVI–GC–MS). Apart from method parameter optimization the influence of humic acids as matrix components on the extraction efficiency of MEPS procedure was also evaluated. The list of target compounds includes polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), nonylphenols (NPs), bisphenol A (BPA) and selected steroid hormones. The performance of the new at-line microextraction-LVI–GC–MS protocol was compared to standard solid-phase extraction (SPE) and LVI–GC–MS analysis. LODs for 100 mL samples (SPE) ranged from 0.2 to 736 ng L−1 were obtained. LODs for 800 μL of sample (MEPS) were between 0.2 and 266 ng L−1. In the case of MEPS methodology even a sample volume of only 800 μL allowed to detect the target compounds. These results demonstrate the high sensitivity of both procedures which permitted to obtain good recoveries (>75%) for all cases. The precision of the methods, calculated as relative standard deviation (RSD) was below 21% for all compounds and both methodologies. Finally, the developed methods were applied to the determination of target analytes in various samples, including snow and wastewater.  相似文献   

18.
Bai L  Mei B  Guo QZ  Shi ZG  Feng YQ 《Journal of chromatography. A》2010,1217(47):7331-7336
A new sorbent of carbon-ferromagnetic nanocomposite was proposed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in environmental samples. The sorbent was specially designed with a hydrophobic sublayer and a hydrophilic surface, which endows the sorbent some unique features. The former shows high extraction capability for the PAHs and the latter provides benign compatibility with the sample matrix. The sorbent can be easily dispersed in aqueous solutions for extraction and no additional stirring or shaking was necessary to facilitate the dispersion, which may bring operational convenience especially for on-site sampling and extraction. Parameters affecting the extraction efficiency were investigated in detail. The optimal conditions were as follows: 10mg of nanoparticles, 40mmol/L of sodium chloride, 30min of extraction time without shaking, hexane as the desorption solvent and 15min as the desorption-sonication time. The results demonstrate that enrichment factors ranging from 35- to 133-fold were obtained for the analytes. The limits of detection and the limits of quantification are in the range of 0.015-0.335ng/mL and 0.05-1.14ng/mL, respectively. Finally, the new sorbent was successfully used for the extraction of PAHs in lake water samples.  相似文献   

19.
In the present study, a natural sorbent based micro-solid phase extraction (μ-SPE) was developed for determination of phthalate esters in milk samples. For the first time, an efficient and cost effective natural material (seed powder of Moringa oleifera) was employed as sorbent in μ-SPE. The sorbent was found to be naturally enriched with variety of functional groups and having a network of interconnected fibers. This method of extraction integrates different steps such as removal of proteins and fatty stuff, extraction and pre-concentration of target analytes into a single step. Thirteen phthalate esters were selected as target compounds for the development and evaluation of method. Some key parameters affecting the extraction efficiency were optimized, including selection of membrane, selection and amount of sorbent, extraction time, desorption solvent, volume of desorption solvent, desorption time and effect of salt addition. Under the optimum conditions, very good linearity was achieved for all the analytes with coefficient of determinations (R2) ranging between 0.9768 and 0.9977. The limits of detection ranged from 0.01 to 1.2 μg L−1. Proposed method showed satisfactory reproducibility with relative standard deviations ranging from 3.6% to 10.2% (n = 7). Finally, the developed method was applied to tetra pack and bottled milk samples for the determination of phthalate esters. The performance of natural sorbent based μ-SPE was better or comparable to the methods reported in the literature.  相似文献   

20.
The feasibility of stir-bar sorptive extraction (SBSE) followed by liquid desorption in combination with large volume injection (LVI)-in port silylation and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of a broad range of 46 acidic and polar organic pollutants in water samples has been evaluated. The target analytes included phenols (nitrophenols, chlorophenols, bromophenols and alkylphenols), acidic herbicides (phenoxy acids and dicamba) and several pharmaceuticals. Experimental variables affecting derivatisation yield and peak shape as a function of different experimental PTV parameters [initial injection time, pressure and temperature and the ratio solvent volume/N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) volume] were first optimised by an experimental design approach. Subsequently, SBSE conditions, such as pH, ionic strength, agitation speed and extraction time were investigated. After optimisation, the method failed only for the extraction of most polar phenols and some pharmaceuticals, being suitable for the determination of 37 (out of 46) pollutants, with detection limits for these analytes ranging between 1 and 800 ng/L and being lower than 25 ng/L in most cases. Finally, the developed method was validated and applied to the determination of target analytes in various aqueous environmental matrices, including ground, river and wastewater. Acceptable accuracy (70-130%) and precision values (<20%) were obtained for most analytes independently of the matrix, with the exception of some alkylphenols, where an isotopically labelled internal standard would be required in order to correct for matrix effects. Among the drawbacks of the method, carryover was identified as the main problem even though the Twisters were cleaned repeatedly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号