首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
2.
We present the synthesis of the isobicyclo‐DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo‐DNA synthesis. Dodecamers containing single isobicyclo‐thymidine incorporations, fully modified A‐ and T‐containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo‐DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self‐pairing. Isobicyclo‐DNA forms preferentially B‐DNA‐like duplexes with DNA and A‐like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self‐paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo‐DNA is stable in fetal bovine serum and does not elicit RNaseH activity.  相似文献   

3.
5‐[(2‐Nitrobenzyl)oxymethyl]‐2′‐deoxyuridine 5′‐O‐triphosphate was used for polymerase (primer extension or PCR) synthesis of photocaged DNA that is resistant to the cleavage by restriction endonucleases. Photodeprotection of the caged DNA released 5‐hydroxymethyluracil‐modified nucleic acids, which were fully recognized and cleaved by restriction enzymes.  相似文献   

4.
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single‐stranded nucleic acids are also relevant in third‐strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base‐paired DNA duplexes and a Hoogsteen base‐paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA‐like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′‐S‐phosphorothiolate (3′‐SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′‐SP modifications is more compact. The 3′‐SP modification was previously shown to stabilise G‐quadruplex and i‐motif structures and therefore is now proposed as a generic solution to stabilising multi‐stranded DNA structures.  相似文献   

5.
Interactions of dsDNA and ssDNA, at the surface of gold and silver electrodes, with three novel anthraquinone derivatives: 3‐(9′,10′‐dioxo‐9′,10′‐dihydro‐anthracen‐1‐yl)‐7,11‐di(carboxymethyl)‐3,7,11‐triazatridecanedioic acid, (AQ‐1); 1‐(9′,10′‐dioxo‐9′,10′‐dihydro‐anthracen‐1yl)‐9‐carboxymethyl‐5‐methyl‐1,5,9‐triazaundecanoicacid, (AQ‐2); and N‐(2‐(9,10‐dioxo‐9,10‐dihydro‐anthracen‐1‐ylamino)ethyl)‐2‐(1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecan‐7‐yl)acetamide, (AQ‐3) are studied. These derivatives are well soluble in water and phosphate buffer solutions. The square wave voltammetric behavior of these redox indicators is described and the parameters of interactions with DNA are reported. It is also pointed out that these compounds can be employed as the hybridization indicators. The difference in the binding ability of the particular redox indicator to single and double stranded DNA can be used for the detection of the complementary nucleic acids.  相似文献   

6.
The development of electroanalytical methods for the detection and quantification of nucleotides in DNA offers vital implications in assessing the degree of oxidation or epigenetic modification in DNA. Unfortunately, the electrochemical response of oligonucleotides is strongly influenced by the size, composition and nucleic base sequence. In this article, an optimized analytical procedure for the enzymatically breakdown of the oligonucleotides to their corresponding nucleotides for the evaluation of the electrochemical response through the use of square wave voltammetry (SWV) is presented. Enzymatic digestion of oligonucleotides has been optimized in terms of buffer composition, digestion time, strategy for stopping the enzymatic reaction and filtration requirement for enzyme removal, and then compared to an established protocol. Under the optimized protocol SWV response of a number of untreated and enzymatically digested six‐mer oligonucleotides, namely 5′‐GGGGGG‐3′, 5′‐AAAAAA‐3′, 5′‐CGCGCG‐3′ and 5′‐AAACGC‐3′ have been analysed, providing a higher sensitivity for the determination of guanosine and adenosine monophosphate species under digestion conditions with a more facile and cost effective procedure. The novel strategy for the enzymatically treated oligonucleotides in combination with the SWV response provides a proof of principle for feasible applications in the diagnosis of methylated guanosine in DNA as a potential biomarker due to its relation with cancer.  相似文献   

7.
《Electroanalysis》2018,30(2):371-377
Modification of nucleic acids with osmium tetroxide reagents (Os,L, such as OsO4,2,2′‐bipyridine, Os,bpy) has been applied in redox DNA labeling, in probing DNA structure as well as in studies of DNA interactions with other molecules. In natural DNA, primarily thymine residues form adducts with the Os,bpy in a structure selective manner. In this paper we introduce a new two‐step technique of DNA modification with the electroactive Os,bpy, consisting in enzymatic construction of DNA bearing butyl acrylate (BA) moieties attached to uracil at C5 or to 7‐deaza adenine at C7, followed by chemical modification of a reactive C=C double bond in the acrylate residue. We demonstrate a facile modification of the BA conjugates in both single‐ and double‐stranded (ds) DNA under conditions when modification within the nucleobase rings in ds DNA is hindered. Various DNA−Os,bpy adducts can easily be analyzed electrochemically and distinguished by different redox potentials. The two‐step procedure appears to be applicable in osmium redox labelling of ds DNA.  相似文献   

8.
Squaramate‐linked 2′‐deoxycytidine 5′‐O‐triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate‐linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys‐containing peptides. Squaramate‐linked DNA formed covalent cross‐links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.  相似文献   

9.
The ferrocenyl‐nucleoside, 5‐ethynylferrocenyl‐2′‐deoxycytidine ( 1 ) has been prepared by Pd‐catalyzed cross‐coupling between ethynylferrocene and 5‐iodo‐2′‐deoxycytidine and incorporated into oligonucleotides by using automated solid‐phase synthesis at both silica supports (CPG) and modified single‐crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl‐nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl‐modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12‐mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid‐phase methods were also used to synthesise 12‐mer ferrocenyl‐containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface‐bound ferrocenyl‐DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene–phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO4, a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation‐induced changes in ferrocene–phosphate distances.  相似文献   

10.
2‐Ethynyl‐DNA was developed as a potential DNA‐selective oligonucleotide analog. The synthesis of 2′‐arabino‐ethynyl‐modified nucleosides was achieved starting from properly protected 2′‐ketonucleosides by addition of lithium (trimethylsilyl)acetylide followed by reduction of the tertiary alcohol. After a series of protecting‐group manipulations, phosphoramidite building blocks suitable for solid‐phase synthesis were obtained. The synthesis of oligonucleotides from these building blocks was successful when a fast deprotection scheme was used. The pairing properties of 2′‐arabino‐ethynyl‐modified oligonucleotides can be summarized as follows: 1) The 2′‐arabino‐ethynyl modification of pyrimidine nucleosides leads to a strong destabilization in duplexes with DNA as well as with RNA. The likely reason is that the ethynyl group sterically influences the torsional preferences around the glycosidic bond leading to a conformation not suitable for duplex formation. 2) If the modification is introduced in purine nucleosides, no such influence is observed. The pairing properties are not or only slightly changed, and, in some cases (deoxyadenosine homo‐polymers), the desired stabilization of the pairing with a DNA complementary strand and destabilization with an RNA complement is observed. 3) In oligonucleotides of alternating deoxycytidine‐deoxyguanosine sequence, the incorporation of 2′‐arabino‐ethynyl deoxyguanosine surprisingly leads to the formation of a left‐handed double helix, irrespective of salt concentration. The rationalization for this behavior is that the ethynyl group locks such duplexes in a left‐handed conformation through steric blockade.  相似文献   

11.
The chemical synthesis of isoxanthopterin and 6‐phenylisoxanthopterin N8‐(2′‐deoxy‐β‐D ‐ribofuranosyl nucleosides) is described as well as their conversion into suitably protected 3′‐phosphoramidite building blocks to be used as marker molecules for DNA synthesis. Applying the npe/npeoc (=2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl) strategy, we used the new building blocks in the preparation of oligonucleotides by an automated solid‐support approach. The hybridization properties of a series of labelled oligomers were studied by UV‐melting techniques. It was found that the newly synthesized markers only slightly interfered with the abilities of the labelled oligomers to form stable duplexes with complementary oligonucleotides.  相似文献   

12.
Hexitol nucleic acids (HNAs) are DNA analogues that contain the standard nucleoside bases attached to a phosphorylated 1,5-anhydrohexitol backbone. We find that HNAs support efficient information transfer in nonensymatic template-directed reactions. HNA heterosequences appeared to be superior to the corresponding DNA heterosequences in facilitating synthesis of complementary oligonucleotides from nucleoside-5'-phosphoro-2-methyl imidazolides.  相似文献   

13.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   

14.
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys‐modified proteins. We previously reported the DNA‐catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5′‐phosphorimidazolide (5′‐Imp) rather than 5′‐triphosphate (5′‐ppp) enables the DNA‐catalyzed modification of Lys in a DNA‐anchored peptide substrate. The DNA‐catalyzed reaction of Lys with 5′‐Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5′‐ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.  相似文献   

15.
The analysis of DNA adducts is of importance in understanding DNA damage, and in the last few years mass spectrometry (MS) has emerged as the most comprehensive and versatile tool for routine characterization of modified oligonucleotides. The structural analysis of modified oligonucleotides, although routinely analyzed using mass spectrometry, is followed by a large amount of data, and a significant challenge is to locate the exact position of the adduct by computational spectral interpretation, which still is a bottleneck. In this report, we present an additional feature of the in‐house developed GenoMass software, which determines the exact location of an adduct in modified oligonucleotides by connecting tandem mass spectrometry (MS/MS) to a combinatorial isomer library generated in silico for nucleic acids. The performance of this MS/MS approach using GenoMass software was evaluated by MS/MS data interpretation for an unadducted and its corresponding N‐acetylaminofluorene (AAF) adducted 17‐mer (5'OH‐CCT ACC CCT TCC TTG TA‐3′OH) oligonucleotide. Further computational screening of this AAF adducted 17‐mer oligonucleotide (5′OH‐CCT ACC CCT TCC TTG TA‐3′OH) from a complex oligonucleotide mixture was performed using GenoMass. Finally, GenoMass was also used to identify the positional isomers of the AAF adducted 15‐mer oligonucleotide (5′OH‐ATGAACCGGAGGCCC‐3′OH). GenoMass is a simple, fast, data interpretation software that uses an in silico constructed library to relate the MS/MS sequencing approach to identify the exact location of adduct on oligonucleotides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Construction of functionalized nucleic acids (DNA or RNA) via polymerase incorporation of modified nucleoside triphosphates is reviewed and selected applications of the modified nucleic acids are highlighted. The classical multistep approach for the synthesis of modified NTPs by triphosphorylation of modified nucleosides is compared to the novel approach consisting of direct aqueous cross-coupling reactions of unprotected halogenated nucleoside triphosphates. The combination of cross-coupling of NTPs with polymerase incorporation gives an efficient and straightforward two-step synthesis of modified nucleic acids. Primer extension using biotinylated templates followed by separation using streptavidine-coated magnetic beads and DNA duplex denaturation is used for preparation of modified single stranded oligonucleotides. Examples of using this approach for electrochemical DNA labelling and bioanalytical applications are given.  相似文献   

17.
A fast, high‐yielding and reliable method for the synthesis of DNA‐ and RNA 5′‐triphosphates is reported. After synthesizing DNA or RNA oligonucleotides by automated oligonucleotide synthesis, 5‐chloro‐saligenyl‐N,N‐diisopropylphosphoramidite was coupled to the 5′‐end. Oxidation of the formed 5′‐phosphite using the same oxidizing reagent used in standard oligonucleotide synthesis led to 5′‐cycloSal‐oligonucleotides. Reaction of the support‐bonded 5′‐cycloSal‐oligonucleotide with pyrophosphate yielded the corresponding 5′‐triphosphates. The 5′‐triphosphorylated DNA and RNA oligonucleotides were obtained after cleavage from the support in high purity and excellent yields. The whole reaction sequence was adapted to be used on a standard oligonucleotide synthesizer.  相似文献   

18.
The synthesis of modified nucleic acids has been the subject of much study ever since the structure of DNA was elucidated by Watson and Crick at Cambridge and Wilkins and Franklin at King's College over half a century ago. This review describes recent developments in the synthesis and application of these artificial nucleic acids, predominantly the phosphoramidites which allow for easy inclusion into oligonucleotides, and is divided into three separate sections. Firstly, modifications to the base portion will be discussed followed secondly by modifications to the sugar portion. Finally, changes in the type of nucleic acid linker will be discussed in the third section. Peptide Nucleic Acids (PNAs) are not discussed in this review as they represent a separate and large area of nucleic acid mimics.  相似文献   

19.
A new method for the post‐synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step‐wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst‐free addition between PTAD and the terminal alkene of 5‐vinyl‐2′‐deoxyuridine (VdU) was exceptionally fast, with a second‐order rate constant of 2×103 m −1 s−1. PTAD derivatives selectively reacted with VdU‐containing oligonucleotides in a conformation‐selective manner, with higher yields observed for G‐quadruplex versus duplex DNA. These results demonstrate a new strategy for copper‐free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.  相似文献   

20.
The astonishing discovery that peptide nucleic acids (PNAs, B=nucleobase), in spite of their drastic structural difference to natural DNA, are better nucleic acid mimetics than many other oligonucleotides has resulted in an explosion of research into this class of compounds. The synthesis, physical properties, and biological interactions of PNAs as well as their chimeras with DNA and RNA are summarized here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号