首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mesoporous silica (MPS) modified with nickel and MPS doped with dysprosium and modified with nickel have been synthesized by the template method. The adsorbents are characterized by various techniques such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, inductively coupled plasma spectroscopy, and X-ray fluorescence analyses. The adsorption properties of the synthesized samples have been investigated by inverse gas chromatography. Furthermore, thermodynamic characteristics of the adsorption of test compound belonging to different classes of organic compounds were obtained. In addition, the contributions of the energy of specific interactions to the total adsorption energy were calculated. It is also shown that entropy plays the determining role in the adsorption of test compounds on synthesized mesoporous materials.  相似文献   

2.
A series of mesoporous nanosphere materials that are functionalized with various terminal and bridging organic groups were synthesized. They have improved adsorption capacity and different release properties for drug and small molecules. The materials contained terminal vinyl, 3-mercaptopropyl, 3-aminopropyl, and secondary amine functional groups and bridging ethane, ethene, and benzene groups within their mesopore channel walls. The samples containing mercaptopropyl and vinyl groups showed greater adsorption capacity and better controlled release behavior for rhodamine 6G molecules. On the other hand, mesoporous matrices containing amine functional groups showed higher adsorption capacity and better release properties for ibuprofen molecules. Further studies revealed that the bridging organic groups in the mesopore channel walls also improved the adsorption capacity and release properties of the materials compared to the corresponding samples containing no bridging organic groups. Such improved adsorption and controlled release properties of molecules by simple changes of functional groups on mesoporous materials are important for the development of nanomaterial drug delivery vehicles and for controlled release of drugs over long time periods at specific targeted sites in the body. By judicious choice of organic groups and by systematic design and synthetic approaches, nanoporous materials having different adsorption capacity and release properties for many other drug molecules can also be achieved.  相似文献   

3.
Mesoporous Trimetallic PtPdRu Spheres with well‐defined spherical morphology and uniformly sized pores were synthesized in an aqueous solution using ascorbic acid as the reducing agent and triblock copolymer F127 as the pore directing agent. These mesoporous PtPdRu spheres exhibited enhanced electrocatalytic activity compared to commercial Pt black, resulting in a ~4.9 times improvement in mass activity for the methanol oxidation reaction. The excellent electrocatalytic activity and stability are due to the unique mesoporous architecture and electronic landscape between different elements.  相似文献   

4.
5.
《化学:亚洲杂志》2017,12(18):2467-2470
We previously succeeded to prepare stable mesoporous Cu films on Au‐coated conductive working electrodes by using polystyrene‐b ‐poly(oxyethylene) (PS63 000b ‐PEO26 000) micelles as template and sulfuric acid to increase ionic conductivity. In the present study, we report the preparation of mesoporous Cu films on Cu foil. By changing the Cu salts and electrodeposition potentials, we discuss how these parameters influence the final product. Without having to filtrate interefering species, such as uric acid, ascorbic acid and glucose, the dopamine concentration can be precisely determined by applying a suitable potential. Therefore, non‐invasive electrochemical sensing based on mesoporous films will be useful for daily diagnosis of mental disorder.  相似文献   

6.
Mesoporous Pt film with highly electrocatalytic activity is successfully synthesized by dealloying of mesoporous PtCu alloy film prepared through electrochemical micelle assembly. The resulting mesoporous electrode exhibits high current density and superior stability toward the methanol oxidation reaction.  相似文献   

7.
Confined tubes : Periodic mesoporous organosilica (PMO) mesophases were synthesized within the confined tubular environment of anodic alumina membrane (AAM) channels, resulting in the formation of either the hexagonal circular or the cubic mesophase.

  相似文献   


8.
The synthesis and characterization of novel electroactive periodic mesoporous organosilica (PMO) are reported. The silsesquioxane precursor, N,N'-bis(4'-(3-triethoxysilylpropylureido)phenyl)-1,4-quinonene-diimine (TSUPQD), was prepared from the emeraldine base of amino-capped aniline trimer (EBAT) using a one-step coupling reaction and was used as an organic silicon source in the co-condensation with tetraethyl orthosilicate (TEOS) in proper ratios. By means of a hydrothermal sol-gel approach with the cationic surfactant cetyltrimethyl-ammonium bromide (CTAB) as the structure-directing template and acetone as the co-solvent for the dissolution of TSUPQD, a series of novel MCM-41 type siliceous materials (TSU-PMOs) were successfully prepared under mild alkaline conditions. The resultant mesoporous organosilica were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry, X-ray diffraction, nitrogen sorption, and transmission electron microscopy (TEM) and showed that this series of TSU-PMOs exhibited hexagonally patterned mesostructures with pore diameters of 2.1-2.8 nm. Although the structural regularity and pore parameters gradually deteriorated with increasing loading of organic bridges, the electrochemical behavior of TSU-PMOs monitored by cyclic voltammetry demonstrated greater electroactivities for samples with higher concentration of the incorporated TSU units.  相似文献   

9.
10.
A facile method for the fabrication of well‐dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core–shell–corona type triblock copolymer [poly(styrene‐b‐2‐vinylpyridine‐b‐ethylene oxide), PS‐b‐P2VP‐b‐PEO] is employed as the pore‐directing agent. Negatively charged PtCl42? ions preferably interact with the protonated P2VP+ blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry.  相似文献   

11.
12.
Ruthenium (Ru)@Ordered mesoporous carbon (OMC) is a key catalyst in fine-chemical production. In general, the OMC support is prepared by a wet self-assembly requiring excessive solvent, toxic phenol–aldehyde precursors and a long reaction time, followed by post-immobilization to load Ru species. Herein, we wish to report a solid-state, rapid, and green strategy for the synthesis of Ru@OMC with biomass tannin as the precursor. The chemistry essence of this strategy lies in the mechanical-force-driven assembly, during which tannin-metal (Zn2+ and Ru3+) coordination polymerization and hydrogen-bonding interactions between tannin-block copolymer (PEO-PPO-PEO, F127) simultaneously occur. After thermal treatment, Ru@OMC catalysts with mesoporous channels, narrow pore-size distribution (≈7 nm), and high surface area (up to 779 m2 g−1) were directed by F127 micelles. Meanwhile, the Zn2+ ions dilute Ru3+ and avoid the sintering of Ru species, resulting in Ru clusters around 1.4–1.7 nm during carbonization (800 °C). Moreover, the Ru@OMC catalyst afforded a good activity (TOF: up to 4170 h−1) in the selective oxidation of benzyl alcohol to benzaldehyde by molecular oxygen.  相似文献   

13.
《化学:亚洲杂志》2017,12(8):877-881
In the present work, 2.4 nm gold nanoparticles (Au NPs) are uniformly dispersed on mesoporous titania thin films which are structurally tuned by controlling the calcination temperature. The gold content of the catalyst is as high as 27.8 wt %. To our knowledge, such a high loading of Au NPs with good dispersity has not been reported until now. Furthermore, the reaction rate of the gold particles is enhanced by one order of magnitude when supported on mesoporous titania compared to non‐porous titania. This significant improvement can be explained by an increase in the diffusivity of the substrate due to the presence of mesopores, the resistance to agglomeration, and improved oxygen activation.  相似文献   

14.
有机-无机杂化氧化硅基介孔材料   总被引:6,自引:0,他引:6  
有机基团可以通过嫁接或共聚的方法引入到氧化硅基介孔材料的孔表面或材料的骨架中,形成表面结合型和桥键型两大类有机-无机杂化氧化硅基介孔材料.本文综述了有机-无机杂化氧化硅基介孔材料的最新研究进展,介绍了其合成方法、应用及潜在的应用领域,详细总结了目前已报道的有机-无机杂化氧化硅基介孔材料的种类,展望了桥键型有机-无机杂化氧化硅基介孔材料的发展及应用前景.  相似文献   

15.
A meostructured WO3/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization–replication route using the block copolymer (poly(ethylene glycol)‐block‐poly(propylene glycol)‐block‐poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X‐ray diffraction, X‐ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N2 adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single‐cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO3/C composite. The carbon content and consequent electric conductivity of these high‐surface‐area (108–130 m2 g?1) mesostructured WO3/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single‐cell test results indicated that the mesostructured WO3/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non‐precious‐metal anode catalysts in proton exchange membrane fuel cell.  相似文献   

16.
本文综述了介孔材料在烯烃环氧化反应中的应用,包括材料的制备方法、催化性能以及活性中心的表征。通过硅钛原子的合理匹配可以达到四配位钛的高度分散,从而提高催化活性。硅烷化处理增加材料表面的疏水性,能够大幅度提高活性和选择性。通过多种谱学和分子模拟等手段可表征骨架钛及其配位情况。  相似文献   

17.
本文综述了介孔材料在烯烃环氧化反应中的应用,包括材料的制备方法、催化性能以及活性中心的表征。通过硅钛原子的合理匹配可以达到四配位钛的高度分散,从而提高催化活性。硅烷化处理增加材料表面的疏水性,能够大幅度提高活性和选择性。通过多种谱学和分子模拟等手段可表征骨架钛及其配位情况。  相似文献   

18.
回顾了近年来硅基介孔材料有机功能化的基本方法和研究进展.基于作者的相关研究工作,着重介绍一种新型的介孔氧化硅有机功能化的方法——功能模板导向的自组装法,阐述了该方法在自组装合成新型有机/无机复合材料方面的应用.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号