首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The potential energy surface of O(^1D)+C2H5Cl reaction was studied using QCISD(T)/6- 311++G(d,p)//MP2/6-31G(d,p) method. The calculations reveal an insertion-elimination mechanism. The insertion reaction of O(^1D) and C2H5Cl produces two energy-rich intermediates, IM1 and IM2, which subsequently decompose into various products. The calculations of the branching ratios of various products formed through the two intermediates were carried out using RRKM (Rice-Ramsperger-Kassel-Marcus) theory at the collision energies of 0, 20.9, 41.8, 62.7, 83.6, 104.5, and 125.4 kJ/mol. HCl is the main decomposition product for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable than IM2, HCl is probably the main product of the O(^1D)+C2H5Cl reaction.  相似文献   

2.
Ab initio CCSD(T)/cc-pVTZ(CBS)//B3LYP/6-311G** calculations of the C(6)H(7) potential energy surface are combined with RRKM calculations of reaction rate constants and product branching ratios to investigate the mechanism and product distribution in the C(2)H + 1-butyne/2-butyne reactions. 2-Ethynyl-1,3-butadiene (C(6)H(6)) + H and ethynylallene (C(5)H(4)) + CH(3) are predicted to be the major products of the C(2)H + 1-butyne reaction. The reaction is initiated by barrierless ethynyl additions to the acetylenic C atoms in 1-butyne and the product branching ratios depend on collision energy and the direction of the initial C(2)H attack. The 2-ethynyl-1,3-butadiene + H products are favored by the central C(2)H addition to 1-butyne, whereas ethynylallene + CH(3) are preferred for the terminal C(2)H addition. A relatively minor product favored at higher collision energies is diacetylene + C(2)H(5). Three other acyclic C(6)H(6) isomers, including 1,3-hexadiene-5-yne, 3,4-hexadiene-1-yne, and 1,3-hexadiyne, can be formed as less important products, but the production of the cyclic C(6)H(6) species, fulvene, and dimethylenecyclobut-1-ene (DMCB), is predicted to be negligible. The qualitative disagreement with the recently measured experimental product distribution of C(6)H(6) isomers is attributed to a possible role of the secondary 2-ethynyl-1,3-butadiene + H reaction, which may generate fulvene as a significant product. Also, the photoionization energy curve assigned to DMCB in experiment may originate from vibrationally excited 2-ethynyl-1,3-butadiene molecules. For the C(2)H + 2-butyne reaction, the calculations predict the C(5)H(4) isomer methyldiacetylene + CH(3) to be the dominant product, whereas very minor products include the C(6)H(6) isomers 1,1-ethynylmethylallene and 2-ethynyl-1,3-butadiene.  相似文献   

3.
Ab initio calculations of the potential energy surface for the C3(1Sigmag+)+C2H2(1Sigmag+) reaction have been performed at the RCCSD(T)/cc-pVQZ//B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level with extrapolation to the complete basis set limit for key intermediates and products. These calculations have been followed by statistical calculations of reaction rate constants and product branching ratios. The results show the reaction to begin with the formation of the 3-(didehydrovinylidene)cyclopropene intermediate i1 or five-member ring isomer i7 with the entrance barriers of 7.6 and 13.8 kcal/mol, respectively. i1 rearranges to the other C5H2 isomers, including ethynylpropadienylidene i2, singlet pentadiynylidene i3, pentatetraenylidene i4, ethynylcyclopropenylidene i5, and four- and five-member ring structures i6, i7, and i8 by ring-closure and ring-opening processes and hydrogen migrations. i2, i3, and i4 lose a hydrogen atom to produce the most stable linear isomer of C5H with the overall reaction endothermicity of approximately 24 kcal/mol. H elimination from i5 leads to the formation of the cyclic C5H isomer, HC2C3, +H, 27 kcal/ mol above C3+C2H2. 1,1-H2 loss from i4 results in the linear pentacarbon C5+H2 products endothermic by 4 kcal/mol. The H elimination pathways occur without exit barriers, whereas the H2 loss from i4 proceeds via a tight transition state 26.4 kcal/mol above the reactants. The characteristic energy threshold for the reaction under single collision conditions is predicted be in the range of approximately 24 kcal/mol. Product branching ratios obtained by solving kinetic equations with individual rate constants calculated using RRKM and VTST theories for collision energies between 25 and 35 kcal/mol show that l-C5H+H are the dominant reaction products, whereas HC2C3+H and l-C5+H2 are minor products with branching ratios not exceeding 2.5% and 0.7%, respectively. The ethynylcyclopropenylidene isomer i5 is calculated to be the most stable C5H2 species, more favorable than triplet pentadiynylidene i3t by approximately 2 kcal/mol.  相似文献   

4.
The interstellar reaction of ground-state carbon atom with the simplest polyyne, diacetylene (HCCCCH), is investigated theoretically to explore probable routes to form hydrogen-deficient carbon clusters at ultralow temperature in cold molecular clouds. The isomerization and dissociation channels for each of the three collision complexes are characterized by utilizing the unrestricted B3LYP/6-311G(d,p) level of theory and the CCSD(T)/cc-pVTZ calculations. With facilitation of RRKM and variational RRKM rate constants at collision energies of 0-10 kcalmol, the most probable paths, thus reaction mechanism, are determined. Subsequently, the corresponding rate equations are solved that the evolutions of concentrations of collision complexes, intermediates, and products versus time are obtained. As a result, the final products and yields are identified. This study predicts that three collision complexes, c1, c2, and c3, would produce a single final product, 2,4-pentadiynylidyne, HCCCCC(X (2)Pi), C(5)H (p1)+H, via the most stable intermediate, carbon chain HC(5)H (i4). Our investigation indicates the title reaction is efficient to form astronomically observed 2,4-pentadiynylidyne in cold molecular clouds, where a typical translational temperature is 10 K, via a single bimolecular gas phase reaction.  相似文献   

5.
An extensive quantum chemical study of the potential energy surface (PES) for all possible isomerization and dissociation reactions of CH3CN is reported at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/ cc-pVTZ//B3LYP/6-311++G(d,p) levels of theory. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the potential energy surface for a given chemical composition in combination with a downhill-walk algorithm. Seventeen equilibrium structures and 59 interconversion transition states have been found on the singlet PES. The four lowest lying isomers with thermodynamic stability are also kinetically stable with the lowest conversion barriers of 49.69-101.53 kcal/mol at the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) level, whereas three-membered-ring isomers c-CH2NCH, c-CH2CNH, and c-CHNHCH can be considered as metastable intermediates which can further convert into the low-lying chain-like isomers and higher lying acyclic isomers with the lowest conversion energies of 21.70-59.99 kcal/mol. Thirteen available dissociation channels depending on the different initial isomers have been identified. A prediction can be made for the possible mechanism explaining the migration of a hydrogen atom in competition with the CC bond dissociation. Several new energetically accessible pathways are found to be responsible for the migration of the hydrogen atom. The present results demonstrate that the SHS method is an efficient and powerful technique for global mapping of reaction pathways on PESs.  相似文献   

6.
The reaction for CH3CH2+N(4S) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single point calculations for all the stationary points were carried out at the QCISD(T)/ 6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2CH2+3NH and H2CN+CH3, and the minor products are the CH3CHN+H in the reaction. The majority of the products CH2CH2+3NH are formed via a direct hydrogen abstraction channel. The products H2CN+CH3 are produced via an addition/dissociation channel. The products CH3CHN+H are produced via an addition/dissociation channel.  相似文献   

7.
Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.  相似文献   

8.
采用B3LYP、MP2(full)和 QCISD 三种方法在6-311G(d, p)和aug-cc-pVDZ基组水平上对三线态O(3P)原子与CH2NH(s)的反应进行了详细的理论研究. 采用B3LYP和MP2(full)方法对反应势能面上的各驻点进行了几何构型优化, 通过振动频率分析证实了过渡态的真实性, 内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系, 用上述三种方法计算得到了各反应通道的反应势垒. 对反应过程中的一些重要点进行了电子密度拓扑分析研究. 研究结果表明, O(3P)原子进攻CH2NH(s)中的N2原子和C1原子生成CH2NHO(t)和OCH2NH(t), CH2NHO(t)中N2上的H5可迁移到C1上异构化为CH3NO(t).  相似文献   

9.
Radical-radical reactions involving chlorinated methyl radicals are particularly important in the mechanism of combustion of chlorinated hydrocarbons. Yet, they are usually difficult to study experimentally. In this paper, four chloride-related radical-radical reactions, i.e., CH3+CH(3-n)Cln (n = 1, 2, 3) and CH3+CCl2, are theoretically studied for the first time by means of the Gaussian-3//B3LYP potential energy surface survey combined with the master equation study over a wide range of temperatures and pressures. Our calculated results show that the three CH3+CH(3-n)Cln reactions can barrierlessly generate the former two kinetically allowed products P1 H(2)C=C(H)(3-n)Cl(n-1)+HCl and P2 CH3CH(3-n)Cl(n-1)+Cl with the very high predominance of P1 over P2. For the CH3 reaction with the biradical CCl2, which inevitably takes place during the CH3+CCl3 reaction and yet has never been studied experimentally or theoretically, H(2)C=CCl2+H and H(2)C=C(H)Cl+Cl are predicted to be the respective major and minor products. The results are compared with the recent laser photolysis/photoionization mass spectroscopy study on the CH3+CH(3-n)Cln (n = 1, 2, 3) reactions. The predicted rate constants and product branching ratios of the CH3+CCl2 reaction await future experimental verification.  相似文献   

10.
The reaction of N(4S)+CH3X(X=Cl、Br) was studied by the ab initio method. The geometries of the reactants, transition states and products were optimized at the MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the MP2/6-311++G(3df,2p) and the QCISD(T)/6-311+G(d,p) levels using the MP2/6-311+G(d,p) optimized geometries. The energies of all the stationary points were calculated by the G2MP2 method. The results of this theoretical study indicate that the reaction has three reaction channels: H abstraction reaction channel a, Cl or Br abstraction reaction channel b and substitution reaction channel c. For the N(4S)+CH3Cl reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have a slight contribution in the reaction. For the N(4S)+CH3Br reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have some contribution in the reaction.  相似文献   

11.
The radical-molecule reaction F+propene (CH2CHCH3) was studied in detail by using the Becke's three parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitationsCCSD(T)/6-311+G(2d,2p). It is shown that F+propene reaction mainly occurs through complex-formation mechanism: F attacks the double bond of propene leading to the formation of complex 1 and complex 2. As the two radical complexes are metastable, they can quickly dissociate to H+C3H5F, CH3+C2H3F and HF+C3H5. Based on the ab initio calculations, the CH3+C2H3F is the main channel, and the H elimination and HF forming channels also provide some contribution to products. The calculated values are in good agreement with the recently reported experimental results.  相似文献   

12.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

13.
Energy selected mono-, di- and trimethylamine ions were prepared by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). Below 13 eV, the main dissociative photoionization path of these molecules is hydrogen atom loss. The ion time-of-flight (TOF) distributions and breakdown diagrams for H loss are analyzed in terms of the statistical RRKM theory, which includes tunneling. Experimental evidence, supported by quantum chemical calculations, indicates that the reverse barrier along the H loss potential energy curve for monomethylamine is 1.8 +/- 0.6 kJ mol(-1). Accurate dissociation onset energies are derived from the TOF simulation, and from this analysis we conclude that Delta(f)H degrees (298K)[CH(2)NH(2)(+)] = 750.4 +/- 1.3 kJ mol(-1) and Delta(f)H degrees (298K)[CH(2)NH(CH(3))(+)] = 710.9 +/- 2.8 kJ mol(-1). Quantum chemical calculations at the G3, G3B3, CBS-APNO and W1U levels are extensively used to support the experimental data. The comparison between experimental and ab initio isodesmic reaction heats also suggests that Delta(f)H degrees (298K)[N(CH(3))(3)] = -27.2 +/- 2 kJ mol(-1), and that the dimethylamine ionization energy is 8.32 +/- 0.03 eV, both of which are in slight disagreement with previous experimental values. Above 13 eV photon energy, additional dissociation channels appear besides the H atom loss, such as a sequential C(2)H(4) loss from trimethylamine for which a dissociation mechanism is proposed.  相似文献   

14.
Density functional theory calculations have been carried out to survey the gas-phase reactions of allylamine with Co+. The geometries and bonding characteristics of all the stationary points involved in the reactions have been investigated at the B3LYP/6-311++G(d,p) level. Final energies are obtained by means of the B3LYP/6-311+G(2df,2pd) single-point calculations. The performance of these theoretical methods is valuated with respect to the available thermochemical data. Co+ strongly binds allylamine by forming a chelated structure in which the metal cation binds concomitantly to the two functional groups of the neutral molecule. Various mechanisms leading to the loss of NH3, NH2, C2H2, and H2 are analyzed in terms of the topology of the potential energy surface. The most favorable mechanism corresponds to the loss of NH3, through a process of C-N activation followed by a concerted beta-H shift. The accompanying NH2 elimination is also discussed. The loss of C2H2 is also favorable, through C-C activation and stepwise beta-H shift, giving Co+(NH2CH3) and Co+H(NH2CH2) as the product ions. Various possible channels for the loss of H2 are considered. The most favorable mechanism of the H2 loss corresponds to a pathway through which the metal acts as a carrier, connecting a hydrogen atom from the methylidyne group of allylamine with a hydrogen atom of the terminal methylene group. The product ion of this pathway has a tricoordinated structure in which Co+ binds to the terminal two Cs and N atoms of the NH2CH2CCH moiety.  相似文献   

15.
The reaction of F(2P) with acetone has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the G3MP2 level using the MP2/6-311G(d,p) optimized structures. Additionally, to ensure the accuracy of the calculations, optimizations with either larger basis set (e.g., MP2/G3MP2Large) or higher level electron correlation [e.g., CCSD/ 6-311G(d,p)] were also performed. It has been revealed that the F + CH3C(O)CH3 reaction proceeds via two pathways: (1) the direct hydrogen abstraction of acetone by F gives the major products HF + CH3C(O)CH2; (2) the addition of F atom to the >C=O double bond of acetone and the subsequent C-C bond cleavage gives the minor products CH3 + CH3C(O)F. All other product channels are of no importance due to the occurrence of significant barriers. Both abstraction and addition appear to be barrierless processes. Variational transition state model and multichannel RRKM theory were employed to calculate the temperature- and pressure-dependent rate constants and branching ratios. The predicted rate constants for the abstraction channel and the yields of HF + CH3C(O)CH3 and CH3 + CH3C(O)F are both in good agreement with the experimental data at 295 K and 700 Torr. A negative temperature dependence of the overall rate constants was predicted at temperatures below 500 K.  相似文献   

16.
The microwave spectrum of 3-butyne-1-selenol has been studied by means of Stark-modulation microwave spectroscopy and quantum chemical calculations employing the B3LYP/aug-cc-pVTZ and MP2/6-311++G(3df,3pd) methods. Rotational transitions attributable to the H80SeCH2CH2C[triple bond]CH and H78SeCH2CH2C[triple bond]CH isotopologues of two conformers of this molecule were assigned. One of these conformers possesses an antiperiplanar arrangement for the atoms Se-C-C-C, while the other is synclinal and seems to be stabilized by the formation of a weak intramolecular hydrogen bond between the hydrogen atom of the selenol group and the pi electrons of the CC triple bond. The energy difference between these conformers was determined to be 0.2(5) kJ/mol by relative intensity measurements, and the hydrogen-bonded form was slightly lower in energy.  相似文献   

17.
Theoretical studies of F atom reaction with trans-1,3-butadiene were carried out at the CCSD(T)/6-311G(d,p)/B3LYP/6-311G(d,p) levels. Energies and structures for all reactants, products and transition states were determined. Two reaction pathways involving the formation of the complexes CH2CHCHFCH2 and CH2CHCHCH2F were found in this reaction. Theoretical results suggest that the H atom channel observed in previous crossed beam experiment occurs likely via these two long-lived complex formation pathways. For the complex CH2CHCHFCH2 pathway, another reaction channel (C2H3+C2H3F) is also accessible. Relative importance of the C2H3+C2H3F channel versus the H formation channel via the same reaction pathway has also been estimated, suggesting that it would be difficult to observe the C2H3+C2H3F channel in a crossed molecular beam experiment. Theoretical analysis also shows that the HF formation proceeds via direct abstraction mechanisms, though it is likely a minor process in this reaction.  相似文献   

18.
Ab initio G3(MP2,CC)//B3LYP/6-311G** calculations have been performed to investigate the potential energy surface (PES) and mechanism of the reaction of phenyl radical with propylene followed by kinetic RRKM-ME calculations of rate constants and product branching ratios at various temperatures and pressures. The reaction can proceed either by direct hydrogen abstraction producing benzene and three C(3)H(5) radicals [1-propenyl (CH(3)CHCH), 2-propenyl (CH(3)CCH(2)), and allyl (CH(2)CHCH(2))] or by addition of phenyl to the CH or CH(2) units of propylene followed by rearrangements on the C(9)H(11) PES producing nine different products after H or CH(3) losses. The H abstraction channels are found to be kinetically preferable at temperatures relevant to combustion and to contribute 55-75% to the total product yield in the 1000-2000 K temperature range, with the allyl radical being the major product (~45%). The relative contributions of phenyl addition channels are calculated to be ~35% at 1000 K, decreasing to ~15% at 2000 K, with styrene + CH(3) and 3-phenylpropene + H being the major products. Collisional stabilization of C(6)H(5) + C(3)H(6) addition complexes is computed to be significant only at temperatures up to 1000-1200 K, depending on the pressure, and maximizes at low temperatures of 300-700 K reaching up to 90% of the total product yield. At T > 1200 K collisional stabilization becomes negligible, whereas the dissociation products, styrene plus methyl and 3-phenylpropene + H, account for up to 45% of the total product yield. The production of bicyclic aromatic species including indane C(9)H(10) is found to be negligible at all studied conditions indicating that the phenyl addition to propylene cannot be a source of polycyclic aromatic hydrocarbons (PAH) on the C(9)H(11) PES. Alternatively, the formation of a PAH molecule, indene C(9)H(8), can be accomplished through secondary reactions after activation of a major product of the C(6)H(5) + C(3)H(6) addition reaction, 3-phenylpropene, by direct hydrogen abstraction by small radicals, such as H, OH, CH(3), etc. It is shown that at typical combustion temperatures 77-90% of C(9)H(9) radicals formed by H-abstraction from 3-phenylpropene undergo a closure of a cyclopentene ring via low barriers and then lose a hydrogen atom producing indene. This results in 7.0-14.5% yield of indene relative to the initial C(6)H(5) + C(3)H(6) reactants within the 1000-2000 K temperature range.  相似文献   

19.
The hydrogen abstraction reactions C2H + CH3CN --> products (R1), C2H + CH3CH2CN --> products (R2), and C2H + CH3CH2CH2CN --> products (R3) have been investigated by dual-level generalized transition state theory. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) are performed at the BH&H-LYP and MP2 methods with the 6-311G(d, p) basis set, and the energy profiles are further refined at the MC-QCISD level of theory. The rate constants are evaluated using canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide temperature range 104-2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values. Our calculations show that for reaction R2, the alpha-hydrogen abstraction channel and beta-hydrogen abstraction channel are competitive over the whole temperature range. For reaction R3, the gamma-hydrogen abstraction channel is preferred at lower temperatures, while the contribution of beta-hydrogen abstraction will become more significant with a temperature increase. The branching ratio to the alpha-hydrogen abstraction channel is found negligible over the whole temperature range.  相似文献   

20.
We present ab initio calculations of the reaction of ground-state atomic oxygen [O((3)P)] with a propargyl (C(3)H(3)) radical based on the application of the density-functional method and the complete basis-set model. It has been predicted that the barrierless addition of O((3)P) to C(3)H(3) on the lowest doublet potential-energy surface produces several energy-rich intermediates, which undergo subsequent isomerization and decomposition steps to generate various exothermic reaction products: C(2)H(3)+CO, C(3)H(2)O+H, C(3)H(2)+OH, C(2)H(2)+CHO, C(2)H(2)O+CH, C(2)HO+CH(2), and CH(2)O+C(2)H. The respective reaction pathways are examined extensively with the aid of statistical Rice-Ramsperger-Kassel-Marcus calculations, suggesting that the primary reaction channel is the formation of propynal (CHCCHO)+H. For the minor C(3)H(2)+OH channel, which has been reported in recent gas-phase crossed-beam experiments [H. Lee et al., J. Chem. Phys. 119, 9337 (2003); 120, 2215 (2004)], a comparison on the basis of prior statistical calculations is made with the nascent rotational state distributions of the OH products to elucidate the mechanistic and dynamic characteristics at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号