首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
许俊敏  胡小会  孙立涛 《物理学报》2012,61(2):27104-027104
本文采用基于密度泛函理论(DFT)的第一性原理计算了铂原子填充扶手椅型石墨烯纳米带(AGNR)中双空位结构的电学性能.计算结果表明: 通过控制铂原子的掺杂位置, 可以实现纳米带循环经历小带隙半导体—金属—大带隙半导体的相变过程; 纳米带边缘位置是铂原子掺杂的最稳定位置, 边缘掺杂纳米带的带隙值随宽度的变化与本征AGNR一样可用三簇曲线表示, 但在较大宽度时简并成两条曲线, 一定程度上抑制了带隙值的振荡; 并且铂原子边缘掺杂导致宽度系数Na = 3p和3p + 1(p是一个整数)的几个较窄纳米带的带隙中出现杂质能级, 有效地降低了其过大的带隙值. 此外, 铂掺杂AGNR的能带结构对掺杂浓度不是很敏感, 从而降低了对实验精度的挑战. 本文的计算有利于推动石墨烯纳米带在纳米电子学方面的应用.  相似文献   

2.
林琦  陈余行  吴建宝  孔宗敏 《物理学报》2011,60(9):97103-097103
用第一性原理研究了N掺杂zigzag型石墨烯纳米带(z-GNRs)的能带结构、透射谱和电流电压特性,研究结果表明N掺杂将使得z-GNRs的能带结构中出现能隙,材料从金属转变为半导体;随着杂质浓度的增大,相同偏压下电流明显减小,同时体系费米面附近的透射率逐渐减小;z-GNRs的长度、宽度以及N原子的替代掺杂位置均会对输运性质产生影响,在宽度较小的情况下,掺杂浓度和掺杂位置两种因素共同影响体系的输运性质. 关键词: 石墨烯纳米带 N掺杂 能带结构 输运性质  相似文献   

3.
张振江  胡小会  孙立涛 《物理学报》2013,62(17):177101-177101
本文基于密度泛函理论的第一性原理计算了单空位缺陷对 扶手椅型石墨烯纳米带电学特性的影响. 计算结果表明: 当单空位位于纳米带边缘位置时, 系统结构最稳定. 不同位置上单空位缺陷的引入都会使得原本为半导体的本征 扶手椅型石墨烯纳米带变成金属性; 随着单空位浓度的减小, 其对纳米带能带结构的影响逐渐减弱; 随着纳米带宽度的增大, 表征其金属性的特征值表现出震荡性的减弱. 单空位缺陷诱导的扶手椅型纳米带的半导体特性到金属特性的转变为石墨烯在 电子器件中的应用提供了理论指导. 关键词: 扶手椅型石墨烯纳米带 单空位缺陷 电学性能  相似文献   

4.
徐雷  戴振宏  隋鹏飞  王伟田  孙玉明 《物理学报》2014,63(18):186101-186101
基于密度泛函理论,计算了外来原子X(Al,P,Ga,As,Si)双空位替代掺杂氟化石墨烯的电子特性和磁性.通过对计算结果分析发现,与石墨烯的双空位掺杂类似,氟化石墨烯的双空位掺杂也是一种较为理想的掺杂方式.通过不同原子掺杂,氟化石墨烯的电子性质与磁性均发生很大变化:Al和Ga掺杂使氟化石墨烯由半导体变为金属,并且具有磁性;P和A8掺杂使氟化石墨烯变为自旋半导体;Si掺杂氟化石墨烯仍是半导体,只改变带隙且没有磁性.进一步讨论磁性产生机制获得了掺杂原子浓度与磁性的关系,并且发现不同掺杂情况的磁性是由不同原子的不同轨道电子引起的.双空位掺杂不仅丰富了氟化石墨烯的掺杂方式,其不同电磁特性也使此类掺杂结构在未来的电子器件中具有潜在应用.  相似文献   

5.
利用基于密度泛函理论的第一性原理方法,研究了掺杂铁、钴和镍原子的锯齿型磷烯纳米带(ZPNR)的磁电子学特性.研究表明,掺杂和未掺杂ZPNR的结构都是稳定的.当处于非磁态时,未掺杂和掺杂钴原子的ZPNR为半导体,而掺杂铁或者镍原子的ZPNR为金属.自旋极化计算表明,未掺杂和掺杂钴原子的ZPNR无磁性,而掺杂铁或者镍原子的ZPNR有磁性,但只能表现出铁磁性.处于铁磁态时,掺杂铁原子的ZPNR为磁性半导体,而掺杂镍原子的ZPNR为磁性半金属.掺杂铁或者镍原子的ZPNR的磁性主要由杂质原子贡献,产生磁性的原因则是在ZPNR中存在未配对电子.掺杂位置对ZPNR的磁电子学特性有一定的影响.该研究对于发展基于磷烯纳米带的纳米电子器件具有重要意义.  相似文献   

6.
利用平面波超软赝势方法研究了B/N原子单掺杂和共掺杂对双层石墨烯电子特性的影响.对掺杂双层石墨烯进行结构优化,并计算了能带结构、态密度、分波态密度等.分析表明,层间范德瓦尔斯相互作用对双层石墨烯的电子特性有比较明显的影响;B/N原子单掺杂分别对应p型和n型掺杂,会使掺杂片层的能带平移,使得体系能带结构产生较大分裂;双层掺杂的石墨烯能带结构与掺杂原子的相对位置和距离有关,对电子特性有明显的调控作用.其中特别有意义的是,B/N双层共掺杂在不同位置情况下会得到金属性或禁带宽度约为0.3 eV的半导体能带.  相似文献   

7.
BN链掺杂的石墨烯纳米带的电学及磁学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王鼎  张振华  邓小清  范志强 《物理学报》2013,62(20):207101-207101
基于密度泛函理论第一性原理系统研究了BN链掺杂石墨烯纳米带(GNRs)的电学及磁学特性, 对锯齿型石墨烯纳米带(ZGNRs)分非磁态(NM)、反铁磁态(AFM)及铁磁性(FM)三种情况分别进行考虑. 重点研究了单个BN链掺杂的位置效应. 计算发现: BN链掺杂扶手椅型石墨烯纳米带(AGNRs) 能使带隙增加, 不同位置的掺杂, 能使其成为带隙丰富的半导体. BN链掺杂非磁态ZGNR的不同位置, 其金属性均降低, 并能出现准金属的情况; BN链掺杂反铁磁态ZGNR, 能使其从半导体变为金属或半金属(half-metal), 这取决于掺杂的位置; BN链掺杂铁磁态ZGNR, 其金属性保持不变, 与掺杂位置无关. 这些结果表明: BN链掺杂能有效调控石墨烯纳米带的电子结构, 并形成丰富的电学及磁学特性, 这对于发展各种类型的石墨烯基纳米电子器件有重要意义. 关键词: 石墨烯纳米带 BN链掺杂 输运性质 自旋极化  相似文献   

8.
本文基于第一性原理计算研究了一种以五元环作为基本结构单元所构成的碳同素异性体--五元环石墨烯.五元环石墨烯具有准直接带隙的特征.本文讨论了三四五族中的原子替换掺杂五元环石墨烯后对其结构和禁带宽度的影响,其中,硼原子和氮原子掺杂后五元环石墨烯呈现金属特性;硅原子掺杂后的五元环石墨烯结构将在纳米电子器件领域有应用的前景.  相似文献   

9.
马瑞  张华林 《计算物理》2019,36(1):99-105
采用基于密度泛函理论的第一性原理方法,系统研究掺杂菱形BN片的石墨烯纳米带的电子特性.掺杂使扶手椅型石墨烯纳米带(AGNRs)的带隙增大,不同位置掺杂AGNRs的带隙大小略有差异.在无磁性态,无论是否掺杂,锯齿型石墨烯纳米带(ZGNRs)都为金属.在铁磁态,掺杂使ZGNRs由金属转变为半导体.而处于反铁磁态时,无论是否掺杂,ZGNRs都为半导体,掺杂使其带隙发生改变.掺杂的AGNRs和ZGNRs的结构稳定,掺杂ZGNRs的基态为反铁磁态.掺杂菱形BN片可以有效调控GNRs的电子特性.  相似文献   

10.
张华林  孙琳  韩佳凝 《物理学报》2017,66(24):246101-246101
利用基于密度泛函理论的第一性原理方法,研究了三角形BN片掺杂的锯齿型石墨烯纳米带(ZGNR)的磁电子学特性.研究表明:当处于无磁态时,不同位置掺杂的ZGNR都为金属;当处于铁磁态时,随着杂质位置由纳米带的一边移向另一边时,依次可以实现自旋金属-自旋半金属-自旋半导体的变化过程,且只要不在纳米带的边缘掺杂,掺杂的ZGNR就为自旋半金属;当处于反铁磁态时,在中间区域掺杂的ZGNR都为自旋金属,而在两边缘掺杂的ZGNR没有反铁磁态.掺杂ZGNR的结构稳定,在中间区域掺杂时反铁磁态是基态,而在边缘掺杂时铁磁态为基态.研究结果对于发展基于石墨烯的纳米电子器件具有重要意义.  相似文献   

11.
The size dependent electronic properties of armchair graphene nanoribbons (AGNR) with Ni doped atoms have been investigated using spin-unrestricted density functional theory. We predict antiferromagnetic (AFM) ground states for Ni-termination and one edge Ni-doping. The computed formation energy reveals that one edge Ni-terminated AGNR are energetically more favourable as compared to pristine ribbons. One edge substitutional doping is energetically more favourable as compared to centre doping by ∼1 eV whereas both edge doping is unfavourable. The bond length of substitutional Ni atoms is shorter than that of Ni adsorption in GNR, implying a stronger binding for substitutional Ni atoms. It is evident that binding energy is also affected by the coordination number of the foreign atom. The results show that Ni-interaction perturbs the electronic structure of the ribbons significantly, causing enhanced metallicity for all configurations irrespective of doping site. The band structures reveal the separation of spin up and down electronic states indicating towards the existence of spin polarized current in Ni-terminated and one edge doped ribbons. Our calculation predicts that AGNR containing Ni impurities can play an important role for the fabrication of spin filters and spintronic devices.  相似文献   

12.
In this paper, the electronic structure and stability of the intrinsic, B-, N-, Si-, S-doped graphene are studied based on first-principles calculations of density functional theory. Firstly, the intrinsic, B-, N-, Si-, S-doped graphene structures are optimized, and then the forming energy, band structure, density of states, differential charge density are analyzed and calculated. The results show that B- and Si-doped systems are p-type doping, while N is n-type doping. By comparing the forming energy, it is found that N atoms are more easily doped in graphene. In addition, for B-, N-, Si-doped systems, it is found that the doping atoms will open the band gap, leading to a great change in the band structure of the doping system. Finally, we systematically study the optical properties of the different configurations. By comparison, it is found that the order of light sensitivity in the visible region is as follows: S-doped> Si-doped> pure > B-doped > N-doped. Our results will provide theoretical guidance for the stability and electronic structure of non-metallic doped graphene.  相似文献   

13.
黄露婷  陈铮  王永欣  卢艳丽 《中国物理 B》2017,26(10):103103-103103
Zigzag graphene nanoribbon(ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we show a detailed investigation of ZGNR decorated with edge topological defects(ED-ZGNR) synthesized in laboratory by Ruffieux in 2015[Pascal Ruffieux, Shiyong Wang, Bo Yang, et al. 2015 Nature 531 489]. The pristine ED-ZGNR in the ground state is an antiferromagnetic semiconductor, and the acquired band structure is significantly changed compared with that of perfect ZGNR. After doping heteroatoms on the edge, the breaking of degeneration of band structure makes the doped ribbon a half-semi-metal, and nonzero magnetic moments are induced. Our results indicate the tunable electronic and magnetic properties of ZGNR by deriving unique edge state from topological defect, which opens a new route to practical nano devices based on ZGNR.  相似文献   

14.
We have investigated the stability and electronic properties of Co-doped zigzag graphene nanoribbons (ZGNR) by employing first principles calculations based on density functional theory. The results show that Co impurities settled in antiferromagnetic ground state which is ~2 meV favourable than ferromagnetic state. The formation energy indicates spontaneous formation of one-edge and centre doped structures, however, one-edge doping is found to be the most energetically favourable configuration. A charge transfer takes place from C to Co atoms which shows the formation of chemical bonding between C and Co. Binding energy also confirms the strong bonding of dopant Co impurity with C. The calculations show that band structures of all the ZGNR is substantially modified due to CoC charge transfer and the characteristic edge states of ZGNR are completely lost. Co-doping induces site independent enhanced metallicity irrespective of the ribbon widths. The broken degeneracy of electronic states in one-edge and centre doped ZGNR is important for spintronic applications.  相似文献   

15.
The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green’s function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR–Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I–V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.  相似文献   

16.
The effects of nitrogen substitutional doping in the Stone-Wales (SW) defect on the electronic transport properties of zigzag-edged graphene nanoribbon (ZGNR) are studied by using density functional theory combined with nonequilibrium Green’s function. The transformation energies of all doped nanostructures are evaluated in terms of total energies and, furthermore, it is found that the impurity placed on the center of the ribbon is the most energetically favorable site. Nitrogen substitution gives rise to a complete electron backscattering region in doped configurations, and the location of which is dependent on the doping sites. The electronic and transport properties of doped ZGNRs are discussed. Our results suggest that modification of the electronic properties of ZGNR with topological defects by substitutional doping might not be significant for some doping sites.  相似文献   

17.
Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号