首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal properties of precursor polyacrylonitrile fibres containing nanoparticles of additives such as SiO2, hydroxyapatite and montmorillonite have been examined. The thermal curves of the fibres under investigation obtained by the derivatographic method in air and DSC in a neutral gas atmosphere were interpreted from the point of view of physical and chemical changes in the fibre-forming polymer. Based on the thermogravimetric curves, the coefficients of thermal stability of the fibres were found. It has been found that the thermal stability of PAN fibres is affected by the type of nanoadditives and the value of the as-spun draw out ratio used during fibre spinning.  相似文献   

2.
The effects of basic fibre-forming parameters on the thermal properties and flammability of fibres from polyimidoamide (PIA) nanocomposite have examined. The comparative analysis of the properties of fibres from modified PIA and PIA nanocomposite has been conducted. The multi-functional fibres prepared from PIA nanocomposite show increased porosity and sorption properties as well as a high thermal stability and reduced flammability in comparison with fibres without MMT.  相似文献   

3.
The paper presents the thermal properties of fibres made of a modified polyimideamide. The effects of as-spun draw ratio and deformation during the fibre drawing stage on the structure, thermal properties, moisture absorption and tenacity of the obtained fibres have been determined. Based on the findings obtained by the DTA and DSC methods, it has been found that the modification of the polymer under investigation causes its glass transition temperature to decrease through the increase of molecular mobility. At the same time, the heat-resistant fibres with the amorphous oriented structure are characterized by a tenacity of 16 cN/tex, good absorption properties and increased porosity. The thermal stability indices of the examined fibres have been determined on the basis of thermogravimetric curves obtained both under air and inert gas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In addition to be an environmentally friendly material, hemp fibres are also inexpensive reinforcements in thermoplastics or concrete composites, due to their intrinsic mechanical, thermal and acoustic properties. The morphology of hemp fibres has been chemically modified in order to enhance the matrix/fibre interface and has been examined by Scanning Electron Microscopy (SEM). In this paper, Gas Chromatography (GC) and Atomic Force Microscopy (AFM) were used to investigate the influence of treatments on the composition of hemp fibres and also on the micro-adhesive interactions between a silica colloidal probe and the surface of the fibres using Chemical Force Microscopy (CFM). Microscopy studies and chemical analysis showed that each treatment tends to lead to a morphology of interconnected web-like structure of hemp fibres. It was found that on an average, the adhesion force, contribution of capillary force and Van der Waals' forces, is higher in the case of NaOH treatment.  相似文献   

5.
Thermal properties of sodium alginate and calcium alginate fibres containing nanoadditives were analysed. Thermal decomposition of fibres based on sodium alginate, both pure and containing nanoadditive, produces sodium carbonate (for fibres without nanoadditive) or, for modified fibres, a mixture of sodium carbonate with the corresponding nanoadditive, which does not undergo any changes within the range of measured temperatures. The chief gaseous products accompanying the decomposition are carbon (IV) oxide and water. The shape of the DTG curves and values of the *T 50 coefficient indicate an improvement in the thermal properties of the fibres when ceramic nanoadditives (SiO2 and HAp) are introduced, as compared with pure sodium alginate fibres. When ceramic nanoadditives (MMT, SiO2, bioglass) are added to the material of calcium alginate fibres the nature of the thermal processes is not affected. However, similarly as for sodium alginate fibres modified with nanoadditive, here also it was note the effect on the value of the *T 50 coefficient. The greatest thermal stability, expressed by the value of *T 50, was observed when SiO2, HAp and bioglass were used as nanoadditives. Considering that the porosity, sorption properties and cross section were similar for all fibres, it can be suggested that in all cases the structure of the fibres has a lesser effect than the type of nanoadditive on the thermal properties of the investigated fibres. The effect of the chemical structure of the material was reflected in the higher decomposition temperature of calcium alginate nanocomposite fibres compared with sodium alginate fibres. This also applies to fibres without any nanoadditive.  相似文献   

6.
The thermal stability of gelatine-polyacrylonitrile graft copolymers fibres obtained under various conditions of deformation has been studied. The thermal properties of examined fibres depend on the synthetic component of the fibre forming material – polyacrylonitrile which appears in the form of grafted PAN chains and PAN homopolymer. It was stated that the highest thermal stability have those fibres which formation process included two stages of drawing with the use of deformation close to the maximal values, with the value of the total draw ratio amounting to 691%. It should be supposed that with such a drawing process, already in its first stage, are created advantageous conditions for the formation of paracrystalline regions to a larger extent and their orientation along the fibre axis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Generation of multi-hollow crystalline Mo fibres   总被引:1,自引:0,他引:1  
Flower-like micrometer-sized crystalline Mo fibres have been prepared by directly heating Mo powder on Mo foil, under Ar atmosphere. ED, EDX, SEM and HRTEM studies reveal that each fibre consists of a single Mo crystal containing multi-hollow cores. A one-dimensional growth mechanism, on the basis of the one-dimensional thermal flow during fibre formation, is discussed.  相似文献   

8.
Intrinsically flame-retardant calcium alginate fibre was prepared by wet spinning and its pyrolysis products and thermal degradation mechanism studied. Combustion behaviour and flammability were assessed using the limiting oxygen index (LOI) and cone calorimetry. LOI results showed that calcium alginate fibre was intrinsically flame retardant with LOI value of 48.0, as compared to about 20.0 for viscose fibre. Cone calorimetry indicated that heat release rate and total heat release values of intrinsically flame-retardant fibre were significantly less than those of viscose fibre. It also shown that intrinsically flame-retardant fibre combustion produced greater quantities of residues than did viscose fibre combustion. Combustion residues were examined using scanning electron microscopy, indicating that calcium alginate fibre produced consistent, thick residue crusts. Pyrolysis was investigated using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which showed that cracking products produced from calcium alginate fibres combustion were less than those in viscose fibre combustion, and pyrolysis of the intrinsically flame-retardant fibre was incomplete. Thermogravimetric analysis (TG) indicated that calcium alginate fibre generated more residues containing carbonaceous char and calcium carbonate, as compared with viscose fibre. We propose a condensed phase mechanism for the calcium alginate fibre flame-retardancy effect.  相似文献   

9.
Flammability of synthetic fibres is significantly worse than that of bulk polymers because of the high surface area to volume ratio and the low tolerance to high filler loadings in the fibre production process. Introducing nanocomposite structures has the potential to enhance the char formation at relatively low loadings of nanoparticulate fillers and hence can reduce the flammability of synthetic polymers and fibres.This paper reports thermal degradation analysis results in conjunction with TG analysis under different atmospheres and further studies of X-ray diffraction characterisation of fibre-forming polypropylene containing selected dispersed nanoclays.The concentrations of hydrocarbons, carbon monoxide and carbon dioxide released during the TG analysis have been monitored and analysed by using a combined electrochemical infrared analyser. The intensity changes of the crystallinity peaks and nanoclay peaks in the polymer and composites are discussed.  相似文献   

10.
The aim of this study was to characterize tensile and thermal properties of sugar palm (Arenga pinnata) fibres obtained from different heights (1, 3, 5, 7, 9, 11, 13, and 15?m) of sugar palm tree. This study has confirmed that in a mature sugar palm tree, degradation was occurred and altered the properties of its fibre. Fibres obtained at the area of live (green) palm frond were found to have a better tensile properties as a result of its optimum chemical composition especially cellulose, hemicelluloses and lignin. For the fibre obtained from the upper part of sugar palm tree, it shows slightly decreasing trend in tensile properties compared to mature fibres. It is due to the fibres are juvenile where their cell walls are progressively built up thus give slightly lower properties than matured fibres. For the fibre obtained from the area of dead palm frond, the fibres are considered to be degraded biologically. It is believed that polymeric chains in microfibrils were broken and their cellulose content was decreased which demonstrated inferior properties (tensile strength, modulus, elongation at break and toughness). The use of such fibre for application as reinforcing fibre in composite is not recommended since the strength of the fibre and composite will be reduced. There were four phases of decomposition of the fibres where the sequence of decomposition started with decomposition of moisture, followed by hemicelluloses, then cellulose and next is lignin while the ash was the last component left. The thermal degradation of these components were found in ranges of 45?C123, 210?C300, 300?C400, 160?C900 and 1723?°C, respectively. Thermogravimetric analysis and derivative thermogravimetric analysis curves showed that the fibre of 1?m showed higher thermal stability than the fibres of 3?C15?m. The different thermal stability for each fibre was due to different chemical compositions especially when the fibre containing high ash content which result in higher thermal stability.  相似文献   

11.
The effect of fibre treatments on thermal stability of flax fibre and crystallization of flax fibre/polypropylene composites was investigated. For thermal stability study, flax fibres have been treated using maleic anhydride, maleic anhydride polypropylene copolymer, vinyltrimethoxy silane and alkalization. In order to compare thermal stability of flax fibres thermogravimetry (TG) analysis has been used. Kinetic parameters have been determined by Kissinger method. Results showed that all treatments improved thermal stability of flax fibres. For crystallinity analysis, three different techniques have been used, differential scanning calorimetry analysis (DSC), pressure–volume–temperature (PVT) measurements for analysis of volume shrinkage and polarized optical microscopy (POM). All techniques results showed that addition of flax fibre increased crystallization rate. Besides, depending on fibre surface treatment and crystallization temperature, flax fibre/PP composites can show transcrystallinity.  相似文献   

12.
Thermal analysis of jute fibre reinforced vinylester resin with 30 vol% of fibre were performed by TG/DTG under dynamic conditions. The fibres were treated with alkaline solution at different temperatures and the final composition (cellulose, hemicellulose and lignin) of the fibre was determined by chemical analysis. Apparent activation energies were determined using a variety of conventional thermogravimetric methods. Two peaks were found in the composite differential curves: the first peak close to 327 and the second peak at 408°C. The apparent activation energy values for the second peak decreased when fibre were treated. The addition of the jute fibres produced a slightly decrease in the thermal stability of the composites.  相似文献   

13.
A series of silicone resin/silica polymeric nanocomposites with 0–6 wt% silica content, comprising well-distributed silica nanoparticles in silicone resin matrix, have been synthesized from a UV-curable polysilisiquioxane (UV-PSL) and a methacrylate-functionalized silica via UV-curing in the presence of 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) as photoinitiator. To enhance the interfacial interaction, the silica surface was firstly treated with 3-(methacryloxy) propyl trimethoxysilane (MPTS), and its structure was analyzed by FTIR spectrophotometry. The thermal stability of nanocomposites was slightly enhanced with the addition of silica particles. SEM studies indicate that silica particles were dispersed homogenously through the polymer matrix. The physical and mechanical properties such as the thickness, hardness, adhesion, impact strength as well as gloss were examined.  相似文献   

14.
The results of thermal analysis of speciality elastomers CSM with different chlorine and sulphur contents is presented in the article. The thermal curves obtained under the atmosphere of inert gas have been interpreted from the point of view of phase transitions and chemical reactions of the examined polymers during their heating. It has been stated that from among the investigated chlorosulphonated polyethylenes, only CSM24, which has the lowest chlorine content, contains a crystalline phase, clearly influences on its T g temperature. Results of the thermal analysis obtained under inert gas atmosphere have been compared with results obtained under termooxidative atmosphere. Irrespective of the research atmosphere, the thermal decomposition of investigated CSM takes place in three stages. The maximum rate of thermal destruction of modified by heating elastomers, dm/dt, decreases with the increase in chlorine content in the sample having been heated.  相似文献   

15.
Suspensions of nanoparticles (namely, hydrotalcite and nanometric silica) have been employed during the finishing of cotton in order to improve its thermal stability and/or flame retardancy. The immersion approach has also been coupled to a surface pre-treatment of the textile by cold oxygen plasma in order to load a higher amount of nanoparticles onto fibres. The time of immersion and the resulting distribution of the nanoparticles onto the fibres, evaluated by scanning electron microscopy in combination with elemental analysis, have been thoroughly investigated. The present study has shown that the above parameters are functions of nanoparticle type. Pre-treatment by cold plasma has been found to be more effective than the immersion only. As far as the thermal stability and the combustion behaviour of treated cotton are concerned, the nanoparticles turned out to be able to delay the degradation in air, modifying mechanism and kinetics, and at the same time enhancing the flame retardancy of cotton by increasing the time to ignition and decreasing the heat release rate peak during the combustion. The joint effect of the two nanoparticles has also been evaluated and found more efficient than the effect of single species.  相似文献   

16.
Usually the raw material for flax pulp production is a blend which contains fibres and shives. In order to better understanding the structure of these materials and the effects of flax pulping, X-ray diffraction and thermogravimetry analysis under air atmosphere have been used. There was a significant effect of the fibre size on the composition, crystallinity, and thermal behaviour of the flax pulps. On the other hand, data obtained from thermogravimetric analysis have been modelled on the basis of two cellulose types characterized by different crystallinity levels, using kinetics equations based on the nucleation concept. As a result of these simulations, composition of the samples, pulp crystallinity and the proportion of amorphous cellulose are calculated.  相似文献   

17.
Kapok/cotton fabric has been used as reinforcement for conventional polypropylene and maleic anhydride grafted polypropylene resins. Treating the reinforcement with acetic anhydride and sodium hydroxide has modified the fabric (fibres). Thermal and mechanical properties of the composites were investigated. Results show that fibre modification gives a significant improvement to the thermal properties of the plant fibres, whereas tests on the mechanical properties of the composites showed poor tensile strength. Mercerisation and weathering were found to impart toughness to the materials, with acetylation showing slightly less rigidity compared to other treatments on either the fibre or composites. The modified polypropylene improved the tensile modulus and had the least toughness of the kapok/cotton reinforced composites. MAiPP reinforced with the plant fibres gave better flexural strength and the same flexural modulus at lower fibre content compared with glass fibre reinforced MAiPP.  相似文献   

18.
Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.  相似文献   

19.
Recently, several types of nanoparticles are frequently incorporated in reinforced epoxy resin composites. A homogeneous dispersion of these nanoparticles is still a problem. Thermoplastic nanofibrous structures can tackle this dispersion issue. Therefore, this paper investigated the effect of electrospun polyamide 6 nanofibrous structures on the mechanical properties of a glass fibre/epoxy composite. The nanofibres were incorporated in the glass fibre/epoxy composite as stand-alone interlayered structures and directly spun on the glass fibre reinforcement. Both ways of nanofibre incorporation have no negative effect on the impregnation of the epoxy. Moreover, the nanofibres remain well dispersed within the matrix. Incorporation of nanofibres increases the stress at failure in the 0°-direction, the best results are obtained when the nanofibres are directly electrospun onto the glass fibres. Optical microscopic images also demonstrate that nanofibres prevent delamination when a 90° crack reaches a neighbouring 0° ply. Furthermore, mode I tests showed a small improvement when a thin nanofibrous structure is deposited directly onto the glass fibres. When the composites are loaded under 45°, it is proven that, for an identical stress, the glass fibre composite with deposited nanofibres has less cracks than when interlayered nanofibrous structures are incorporated. Generally, it can be concluded that the addition of polyamide 6 nanofibres improves some mechanical characteristics of a glass fibre/epoxy composite.  相似文献   

20.
The purpose of this paper is to characterize the radiation induced light in optical fibres to optimise the design of a new Cherenkov detector for portal imaging application in radiation therapy. Experiments were performed using a single optical fibre to evaluate the angle dependence, spectrum and temporal properties of the radiation induced light in the optical fibre in comparison with that of Cherenkov radiation. A theoretical model was also developed to compare with experiments. It has been found that radiation-induced light output from the optical fibre under megavoltage (MV) x-ray irradiation is significantly (about 45 times) higher than that under 100 kVp x-ray irradiation for the same dose rate at the fibre. The angular-dependence, spectrum and temporal properties of the radiation induced light in the optical fibre under MV x-ray irradiation match that of Cherenkov radiation. Different angular dependence and spectrum results from that of previous studies on radiation induced light in optical fibres have also been found. The result of the theoretical model agrees with the angle-dependence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号