首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple model for the direct ionization and transfer ionization probabilities in A^2++He collisions in a wide projectile energy range is proposed based on the Bohr-Lindhard model and the classical statistical model. The calculated cross sections are in satisfactory agreement with the experimental data available.  相似文献   

2.
Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in excellent agreement with the previous result. Vector correlations, product rotational alignment parameters (P2(j′. k)) and several polarizeddependent differential cross sections are further calculated for the reaction. The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES, arising from various collision energies or mass factors.  相似文献   

3.
The ionization process in the collisions of He^2+ with C^q+ (q = 0-5) is investigated by using the continuum-distorted-wave eikonal-initial-state approximation. Double-differential cross sections for 1s and 2s sub-shells are obtained at the electron-ejected angle θ = 0° with the projectile energy ranging from 30keV/u to 10MeV/u. Variation of ionization mechanisms with q in C^q+ is studied, and the dependences on the projectile energies and target sub-shells are also discussed. It is found that in the whole energy range, the absolute values of soft collision (SC) and binary encounter (BE) peaks decrease with increasing q. For the lower incident energies, the electron capture to the projectile continuum (ECC) peak decrease with increasing q as well as SC and BE peaks. For the higher incident energies (〉 1 MeV/u), the absolute value of ECC peak increases with increasing q, so that the crossings of cross sections appear for C^q+ with different q. This can be explained by the matching of velocities between the projectile and the electron initially bound to the target.  相似文献   

4.
We have investigated fragment emission from molecularions in H2^r collisions between S^q and H2 with incident energies of 12.5, 15.625, 18.75, 21.875, 25, 28.125, 31.25, 34.375, 37.5, 40.625, and 43.75 keV/u, respectively. The energy distributions of the fragments are measured by time-of-flight techniques. The experimental results show evidences for molecular Coulomb explosion and dissociation. A program[1] is estab-lished based on the Monte Carlo technique to simulate the time-of-flight spectrum of fragment ions with different initialkinetic energy in ion-Molecule collisions. Simulations are done for S^2 H2 collisions and compared with experimental results.  相似文献   

5.
The L-shell x-ray yields of Zr and Mo bombarded by slow Ar16+ ions are measured. The energy of the Ar^16+ ions ranges from about 150 keV to 350 keV. The L-shell x-ray production cross sections of Zr and Mo are extracted from these yields data. The explanation of these experimental results is in the framework of the adiabatic direct- ionization and the binding energy modified BEA approximation. We consider, in the slow asymmetric collisions such as Ar and Mo/Zr, the transient united atoms (UA) are formed during the ion-surface interaction and the direct-ionization is the main mechanism for the inner-shell vacancy production. Generally, the theoretical results are in good agreement with the experimental data.  相似文献   

6.
Cross-section ratios σTI/σSC of transfer ionization (TI) to single capture (SC) of C^q+- and O^q+-He (q = 1 - 3) collisions in the energy range of 15-440 keV/u (0.8-4.2 vBohr) are experimentally determined. It is shown that σTI/σSC strongly depends on the projectile velocity, and there is a maximum for E(keV/u)/q1/2 ≈, 150. Combining the Bohr-Lindhard model and the statistical model, a theoretical estimate is presented, in reasonable agreement with the experimental data when E(keV//u)/q^1/2 〉 35.  相似文献   

7.
Introducing a theoretical method to treat time-dependent wave-packet dynamics for atom collisions, we calculate the cross sections of proton impact excitation (2s - 2p) with a Li atom by directly numerically integrating the time-dependent Schrodinger equation on a three-dimensional Cartesian mesh. Our calculated results are in good agreement with the available experimental measurements.  相似文献   

8.
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.  相似文献   

9.
邵贵成 《中国物理 C》2010,34(3):340-343
Multiparticle azimuthal correlations in central nucleus-nucleus collisions at high energy are described by a simple formula. The calculated results are in agreement with the experimental data of carbon and oxygen induced interactions at Dubna energy. The comparison between the calculated results and experimental data shows that particles are emitted isotropically in the rest frame of the emission sources, and the emission sources have movements in momentum space.  相似文献   

10.
The single charge transfer process in ^3He^2+ + ^4He collisions is investigated using the quantum-mechanical molecular- orbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6 keV and lOkeV for the projectile ^3He^2+. Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.  相似文献   

11.
The nonradiative charge-transfer cross sections for protons colliding with Rb(5s) atoms are calculated by using the quantum-mechanical molecularorbital close-coupling method in an energy range of 10 3 keV-10 keV.The total and state-selective charge-transfer cross sections are in good agreement with the experimental data in the relatively low energy region.The importance of rotational coupling for chargetransfer process is stressed.Compared with the radiative charge-transfer process,nonradiative charge transfer is a dominant mechanism at energies above 15 eV.The resonance structures of state-selective charge-transfer cross sections arising from the competition among channels are analysed in detail.The radiative and nonradiative charge-transfer rate coefficients from low to high temperature are presented.  相似文献   

12.
The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybrid potentials for the singlet X^1 ∑g^+ and triplet a^3 ∑u^+ ground states of the Li2, Our calculated values for the scattering lengths α and the effective ranges re are compared with previous ones, and found them to be in good agreement. The scattering lengths are 34.6α0 for the singlet state and -27.6α0 for the triplet state. Shape resonances occur in the collisions at low energies. We also calculate the total cross sections and the energy positions of shape resonances for both X^1 ∑g^+ and a^3 ∑u^+ states.  相似文献   

13.
Using a modified R-matrix code, the fine-structure-resolved partial photoionization cross sections of excited Na (Z = 11) are calculated within the Breit-Pauli approximation. Our calculated energy levels of Na+ and Na are in good agreement with the experimental values within 1% and the branching ratios of the J-resolved partial cross sections are consistent with the recent measurements within the experimental uncertainties. The agreements are impossible to be obtained without adequately taking into account the relativistic effects and the electron correlations together. Therefore, even for the intermediate-Z elements (e.g. Na with Z = 11), the relativistic effects (mainly the spin-orbit interactions) should not be neglected.  相似文献   

14.
The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.  相似文献   

15.
The four-body Coulomb–Born distorted wave approximation is applied to investigate the integral as well as projectile angular-differential cross sections for single-electron capture in the collision of energetic singly positive charged helium ions with helium atoms in their ground states. The formalism satisfies the correct boundary conditions. The influence of the dynamic electron correlations on the cross sections is studied by considering the inter electronic interactions in the complete perturbation potentials in post form. Also, the sensitivity of the cross sections to the static electronic correlations is studied by using the single-zeta and the highly correlated Byron–Joachain wave functions to describe the initial bound state of the active electrons. The obtained results for the energy range of 40–5000 ke V/amu are reported and compared with other three- and four-body theoretical data and available experimental measurements. The comparison leads us to discuss the validity of the applied approach and survey the interaction effects on the cross sections by recognizing the electron–electron interaction. Particularly, for differential cross sections, the comparison of the present four-body method with the experiment shows that the agreement is not as good as that for its three-body version.  相似文献   

16.
By means of both the theory for pressure-induced Shifts (PS) of energy spectra and the theory for shifts of energy spectra due to electron-phonon interaction (EPI), the normal-pressure energy spectra of α and β centers of Cr^3+ ions for LLGG:Cr^3+ and the PS's of R1 lines and U band of these centers have been calculated at 10 K, respectively. The total calculated results are in very good agreement with the experimental data. For LLGG:Cr^3+, the pressureinduced low-high crystal-field transition and the reversal of R1-line PS take place. The pressure-dependent variation of Rmix^ei (2E - 4T2) [mixing-degree of (t2^2 (^3T1)e^4T2) and (t2^3 E) base-wavefunctions in the wavefunction of R1 state without EPI] plays a key role for the reversal of R1-line PS. The behavior of the pure electronic PS of R1 line is quite different from that of the PS of R1 line due to EPI. It is the combined effect of them that gives rise to the total PS of R1 line. The comparison between R1-line PS's of GSGG:Cr^3+ and LLGG:Cr^3+ has been made. It is found that a peak of R1-line PS appears at Rmix^ei (^2E - ^4T2) ≈ 0.08.  相似文献   

17.
The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s22s to excited states 1s22p, 1s23l (l=s, p, d) and 1s24l (l=s, p, d, f)at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.  相似文献   

18.
A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS)for proton-impact single ionization of helium atoms in their ground states.The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically.Calculations are performed in the scattering and perpendicular planes.The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets.An illustrative computation is performed for 75-ke V proton–helium collisions and the obtained results are compared with experimental data and other theoretical predictions.Although for small momentum transfers,the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes,some significant discrepancies are still present at large momentum transfers in these planes.However,our results are compatible and for some cases,better than those of the other sophisticated calculations.  相似文献   

19.
We employ a direct capture method to study the influence of D-state in ^4He on S factor for the ^2H(d,γ)^4He reaction, in which the D-state component of the colliding deuterons and D-state component in ^4He ground state are considered. The parameters of Woods-Saxon (WS) potentials are obtained by reproducing the binding energy of d-d (i.e. ^2H-^2H) system, and d-d elastic scattering phase shifts calculated by the resonating group method. The theoretical results are in good agreement with the experimental data at Ec.m〈 3 MeV. The impact of the D state probability in ^4He on the extrapolated value of the astrophysical S factor for ^2H(d, γ)^4He reaction is discussed.  相似文献   

20.
This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with the diffuse functions, aug-cc-pV5Z, in the valence range. Employing the potential, it accurately determines the spectroscopic parameters. The present De, Re, ωe, ωeχe, ae and Be values are of 3.7767eV, 0.13424nm, 2699.846 cm^-1, 47.7055 cm^-1, 0.2639cm^-1 and 9.4414 cm^-1, respectively, which are in excellent agreement with those obtained from the measure- ments. A total of 19 vibrational states has been found when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the experimental results. The total and various partial-wave cross sections are computed for the elastic collisions of sulfur and hydrogen in their ground states at low temperatures when two atoms approach each other along the SH(X^2∏) potential energy curve. Over the impact energy range from 1.0×10^-11 to 1.0×10^-4 a.u., eight shape resonances have been found in the total elastic cross sections. For each shape resonance, the resonant energy is accurately calculated. Careful investigations have pointed out that these resonances result from the 1 = 0, 1, 2, 3, 4, 6, 7, 8 partial-wave contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号