首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
殷聪  谭学治  马琳  于洋 《物理学报》2014,(11):358-365
针对认知无线电系统中认知用户在利用频谱聚合技术时出现的调度不公平问题,提出了一种基于频谱聚合的全局比例公平调度算法.在比例公平调度的基础上,结合频谱聚合技术的特点,引入了频谱聚合的跨度与认知用户剩余数据队列长度这两个参量,使认知用户在聚合可用频谱的范围内,最大限度的保证吞吐量公平性.仿真结果表明,相比于局部比例公平调度算法和最大载干比调度算法,该算法在公平性指数和系统服务时间上更占优势,同时具有较低的吞吐量抖动,从而有效地提高系统容量和系统效率,确保认知用户之间对系统资源的公平利用.  相似文献   

2.
杨小龙  谭学治  关凯 《物理学报》2015,64(10):108403-108403
针对认知无线电网络中认知用户广义传输时间的优化问题, 提出了一种基于抢占式续传优先权M/G/m排队理论的频谱切换模型. 在该排队模型中, 为了最小化认知用户广义传输时间, 采用混合排队-并列式服务的排队方式. 在此基础上, 深入分析多个认知用户、多个授权信道、多次频谱切换条件下认知用户信道使用情况, 从而推导出广义传输时间表达式. 最后探讨了该模型下自适应频谱切换策略. 仿真结果表明, 相比于已有的频谱切换模型, 该模型不仅能够更加完整地描述认知用户频谱切换行为, 而且使得认知用户传输时延更小, 广义传输时间更短. 此外, 认知无线电网络允许的认知用户服务强度增加, 能够容纳的认知用户数量增多. 因此, 该模型提升了认知用户频谱切换的性能, 更好地实现了认知用户与授权用户的频谱共享.  相似文献   

3.
张茜  刘光斌  余志勇  郭金库 《物理学报》2015,64(1):18404-018404
该文研究了冗余中继, 次用户及中继用户数目, 检测门限, 信道传输错误率等因素对中继协作频谱感知系统性能的影响, 并提出一种新的自适应全局最优化算法.该算法基于获得最大无干扰功率的自适应中继选择方法, 确定备选认知中继集合;单个次用户以信道传输错误率最小为准则, 从备选认知中继集合中自适应选择最佳中继, 使总体检测率最大;在给定目标检测率的条件下, 以系统吞吐量最大为准则, 给出了自适应全局最优化算法.仿真实验结果表明新算法信道传输精度高, 信道吞吐量大, 节约带宽资源.  相似文献   

4.
针对认知无线电网络(CRN)中空闲频谱感知困难的问题,本文提出了基于前向纠错和差分进化算法的多节点频谱感知算法。首先,利用基于差分进化算法的协同检测完成信号感知;然后,研究了信道噪声对频谱感知性能的影响;最后,分析了前向纠错技术在信道存在噪声时对频谱感知性能的影响。仿真实验将纠错和无纠错控制信道的不同信噪比作为依据,采用三种不同的检测方法评估了本文算法。仿真实验结果表明,在存在噪声的认知无线电网络中,本文算法提高了系统的性能和检测概率,且协同感知算法的性能随着节点数目的增加而提高,该算法适合应用于实时性要求较高的应用程序。  相似文献   

5.
基于二进制粒子群算法的认知无线电决策引擎   总被引:5,自引:0,他引:5       下载免费PDF全文
提出了基于粒子群算法的认知无线电决策引擎,并提出了一种种群自适应粒子群算法,利用粒子群算法调整优化无线电参数,运用多载波系统对算法性能进行了仿真分析.实验结果表明基于二进制粒子群算法的认知决策引擎在收敛速度、收敛精度和算法稳定性上都要明显优于经典遗传算法,基于种群自适应粒子群算法的决策引擎则能进一步提高算法初期性能,满足认知无线电实时性要求. 关键词: 认知无线电 粒子群算法 遗传算法 认知决策引擎  相似文献   

6.
提出了一种兼顾认知无线电系统可靠性和低负载的基于信任度的双门限协作频谱检测算法.系统首先使满足双门限要求的认知节点参与协作感知,当满足双门限要求的认知节点数目不足时,增加满足信任度参数要求的认知节点参与协作感知.融合中心存储了认知节点的检测记录,并以此为局部检测结果设置融合权重.理论分析和仿真结果表明,该算法所需传输的感知参数减少了,占用的信道带宽降低.同时,由于不可靠用户的减少,算法的检测性能进一步提高了.此外,算法通过调整参数nt使系统适应于不同类型的无线业务,具有一定的灵活性.  相似文献   

7.
基于鱼群算法的OFDMA自适应资源分配   总被引:3,自引:0,他引:3       下载免费PDF全文
汪照  李有明  陈斌  邹婷 《物理学报》2013,62(12):128802-128802
针对多用户正交频分多址系统自适应资源分配问题, 提出了一种新的子载波和基于鱼群算法的功率自适应分配算法. 该算法首先对总功率在子载波间均等分布的条件下进行子载波分配,然后引入鱼群算法并根据给出的兼顾用户公平性与系统容量的适应度函数,通过全局搜索实现用户间的功率分配. 仿真结果表明,新算法在保证用户公平性的同时, 还实现了系统总的传输速率最大化. 关键词: 多用户正交频分多址 资源分配 鱼群算法 速率最大化  相似文献   

8.
Jiao Chuanhai  Li Yongcheng 《强激光与粒子束》2018,30(3):033203-1-033203-7
针对在实际宽带压缩频谱感知中难以预先获知宽带频谱稀疏度的问题,提出一种改进的稀疏度自适应匹配追踪(modified sparsity adaptive matching pursuit, MSAMP)算法,该算法在支撑集选择过程中对稀疏度进行了预估计。结合序贯压缩检测技术,给出了一种基于该算法的多认知用户合作场景下的宽带压缩频谱感知方法,理论分析和实验仿真结果表明,该方法可在频谱稀疏度先验知识缺少的情况下,有效提高宽带频谱感知性能。  相似文献   

9.
混沌免疫算法求解认知无线电网络资源分配问题   总被引:1,自引:0,他引:1       下载免费PDF全文
柴争义  郑丽萍  朱思峰 《物理学报》2012,61(11):118801-118801
为了优化认知无线电网络中多用户正交频分复用子载波的资源分配, 将其转换为一个约束优化问题, 进而提出了一种基于混沌免疫优化的求解方法.给出了算法的实现过程和关键技术, 设计了适合算法求解的编码、 克隆、 重组、 变异算子.实验结果表明, 在满足认知用户速率、 所需误码率及干扰约束的条件下, 本文所用算法减小了整个系统所需的总发射功率, 同时收敛速度较快, 能够得到较优的子载波分配方案, 进而提高频谱利用效率.  相似文献   

10.
针对在实际宽带压缩频谱感知中难以预先获知宽带频谱稀疏度的问题,提出一种改进的稀疏度自适应匹配追踪(modified sparsity adaptive matching pursuit,MSAMP)算法,该算法在支撑集选择过程中对稀疏度进行了预估计。结合序贯压缩检测技术,给出了一种基于该算法的多认知用户合作场景下的宽带压缩频谱感知方法,理论分析和实验仿真结果表明,该方法可在频谱稀疏度先验知识缺少的情况下,有效提高宽带频谱感知性能。  相似文献   

11.
Cognitive Radio (CR) networks are envisioned as a key empowering technology of the fifth-generation (5G) wireless communication networks, which solves the major issues of 5G, like high-speed data transmission, seamless connectivity, and increased demand for mobile data. Another significant characteristic of the 5G network is green communications, as energy consumption from the communication field is predicted to rise remarkably by the year 2030. In this work, we are concerned about energy-related issues and propose a cooperation-based energy-aware reward scheme (CEAR) for next-generation green CR networks. The proposed CEAR scheme is based on the antenna and temporal diversity of the primary users (PUs). For providing the service to the PUs, the users of another network called cognitive users (CUs) work as a cooperative relay node, and, in return, they get more spectrum access opportunities as a reward from the primary network. The CUs with delay-tolerant data packets take a cooperative decision by recognizing the availability and traffic load of PUs, channel state information, and data transmission requirements. We utilize the optimal stopping protocol for solving the decision-making problem and use the backward induction method to obtain the optimal cooperative solution. The simulation results reveal notable enhancements in energy efficiency (EE) of CUs compared with other cooperative schemes. The proposed CEAR scheme is more energy-efficient for ultra-dense network deployment because results show that the CU’s EE, spectral efficiency (SE), and throughput improved with the increase of PUs.  相似文献   

12.
This paper addresses the problem of distributed dynamic spectrum access in a cognitive radio (CR) environment utilizing deep recurrent reinforcement learning. Specifically, the network consists of multiple primary users (PU) transmitting intermittently in their respective channels, while the secondary users (SU) attempt to access the channels when PUs are not transmitting. The problem is challenging considering the decentralized nature of CR network where each SU attempts to access a vacant channel, without coordination with other SUs, which result in collision and throughput loss. To address this issue, a multi-agent environment is considered where each of the SUs perform independent reinforcement learning to learn the appropriate policy to transmit opportunistically so as to minimize collisions with other users. In this article, we propose two long short-term memory (LSTM) based deep recurrent Q-network (DRQN) architectures for exploiting the temporal correlation in the transmissions by various nodes in the network. Furthermore, we investigate the effect of the architecture on success rate with varying number of users in the network and partial channel observations. Simulation results are compared with other existing reinforcement learning based techniques to establish the superiority of the proposed method.  相似文献   

13.
In this paper, the performance of cognitive radio (CR) code division multiple access (CDMA) networks is analyzed in the presence of receive beamforming at the base stations (BSs). More precisely, we analyze, through simulations, the performance achievable by a CR user, with and without spectrum sensing, in a three-cell scenario. Uplink communications are considered. Three different schemes for spectrum sensing with beamforming are presented, together with a scheme without spectrum sensing. CR users belong to a cognitive radio network (CRN) which is coexisting with a primary radio network (PRN). Both the CRN and the PRN are CDMA based. The CRN is assumed to utilize beamforming for its CR users. Soft hand-off (HO) and power control are considered in both the CRN and the PRN. The impact of beamforming on the system performance is analyzed, considering various metrics. In particular, we evaluate the performance of the proposed systems in terms of outage probability, blocking probability, and average data rate of CR users. The results obtained clearly indicate that significant performance improvements can be obtained by CR users with the help of beamforming. The impact of several system parameters on the performance of the three considered spectrum sensing schemes with beamforming is analyzed. Our results, in terms of probability of outage, show that the relative improvement brought by the use of beamforming is higher in the absence of spectrum sensing (reduction of 80%) than in the presence of spectrum sensing (reduction of 42%).  相似文献   

14.
Cognitive radio (CR) has been viewed as a promising solution to spectrum scarcity. In order to design a reliable CR system, many improvements have been proposed to enhance spectrum sensing performance of secondary users (SUs) in a CR network (CRN). Sensing reliability and transmission throughput of SUs are two important performance criteria, which should be optimized to enhance signal protection of primary user (PU) as well as spectrum utilization rate. In this paper, we consider Rayleigh-faded sensing channels and SUs use improved energy detector (IED) to make their local decisions. The final decision is made in a fusion center (FC) through the cooperative spectrum sensing (CSS) scheme with erroneous reporting channels. We show that the improved double-threshold energy detector (IDED) outperforms the conventional energy detector (CED) in terms of the total error rate. Furthermore, we evaluate the transmission throughput of the CRN through various ED schemes with detection constraints over both perfect and imperfect reporting channels. We show that the IDED has the highest achievable throughput among different ED schemes over imperfect reporting channels.  相似文献   

15.
As the data traffic is increasing, the spectrum bands are getting congested. It causes low latency and unreliable communication. Additional spectrum can be utilized to solve this problem but moving towards higher frequency means higher power requirement and increased cost. Cognitive radio network is another solution to this problem. It helps the nodes of a network to use the channels of the nearby bands which are not being used at that time. However, it has several challenges. One of these challenges is the transmission collision with the primary users of the network. Researchers have been working on this problem. However, it is still a major concern for the researchers. This paper proposes an algorithm that selects the optimal cognitive channel for the data transmission by the secondary user in such a way so that the transmission collision with the PU is minimized. After comparison with the existing latest similar protocol, the proposed protocol has shown 5.6% improvement in the throughput, 5.3% improvement in PDR. The delay is decreased by 0.6% and the transmission collision with PUs is reduced by 2.5%.  相似文献   

16.
A cognitive radio(CR) network with energy harvesting(EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model(HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree(WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user(SU) and the interference to the primary user(PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming(MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution(DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service(Qos). Numerical results are given to verify our analysis.  相似文献   

17.
In this paper, we study the power allocation problem for an orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) system. In a departure from the conventional power allocation schemes available in the literature for OFDM-based CR, we propose power allocation schemes that are augmented with spectral shaping. Active interference cancellation (AIC) is an effective spectral shaping technique for OFDM-based systems. Therefore, in particular, we propose AIC-based optimal and suboptimal power allocation schemes that aim to maximize the downlink transmission capacity of an OFDM-based CR system operating opportunistically within the licensed primary users (PUs) radio spectrum in an overlay approach. Since the CR transmitter may not have the perfect knowledge about the instantaneous channel quality between itself and the active PUs, the interference constraints imposed by each of the PUs are met in a statistical sense. We also study an optimal power allocation scheme that is augmented with raised cosine (RC) windowing-based spectral shaping. For a given power budget at the CR transmitter and the prescribed statistical interference constraints by the PUs, we demonstrate that although the on-the-run computational complexity of the proposed AIC-based optimal power allocation scheme is relatively higher, it may yield better transmission rate for the CR user compared to the RC windowing-based power allocation scheme. Further, the AIC-based suboptimal scheme has the least on-the-run computational complexity, and still may deliver performance that is comparable to that of the RC windowing-based power allocation scheme. The presented simulation results also show that both the AIC-based as well as the RC windowing-based power allocation schemes lead to significantly higher transmission rates for the CR user compared to the conventional (without any spectral shaping) optimal power allocation scheme.  相似文献   

18.
Since the sensing power consumption of cooperative spectrum sensing (CSS) will decrease the throughput of secondary users (SU) in cognitive radio (CR), a joint optimal model of fair CSS and transmission is proposed in this paper, which can compensate the sensing overhead of cooperative SUs. The model uses the periodic listen-before-transmission method, where each SU is assigned a portion of channel bandwidth, when the primary user (PU) is estimated to be free by the coordinator. Then, a joint optimization problem of local sensing time, number of cooperative SUs, transmission bandwidth and power is formulated, which can compensate the sensing overhead of cooperative SUs appropriately through choosing suitable compensating parameter. The proposed optimization problem can be solved by the Polyblock algorithm. Simulation results show that compared with the traditional model, the total system throughput of the fairness cooperation model decreases slightly, but the total throughput of the cooperative SUs improves obviously.  相似文献   

19.
In this paper, opportunistic spectrum access is proposed for TDMA-based cognitive radio networks. In TDMA-based networks, the time is divided into slots with fixed length one by one. If a primary user (PU) needs to transmit data, one or several slots will be used. Otherwise, the slots are idle and can be utilized by secondary users (SUs). When SUs want to use the licensed channel, they should sense the channel at the beginning period of each slot. Then SUs exchange their sensing results and make the same decision about the channel state (idle or used by PUs), which could reduce the probability of false sensing. The aforementioned duration is called spectrum sensing phase. When SUs decide there is an idle channel, they contend to use the channel at the rest time of the slot. The duration is called access phase. In this period, SUs contend the channel with backoff counters. When the remaining time is less than one data transmission duration, SUs cannot transmit data packets. Therefore, the remaining time is wasted. To solve this problem, SUs transmit control packets with small length in the remaining time instead. The SU who exchange control packets successfully reserves the channel and sends a data packet prior to other SUs in access phase of the next idle slot. Obviously, this reserved transmission is without collision. The independent spectrum sensing, channel state decision and control packets reservation influence the performance of SUs. The proposed scheme is formulated with all above factors. Simulations which consist with the numerical results show the proposed access scheme achieve higher throughput than the existed scheme without channel reservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号