首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Let (X, Y) be a bivariate random vector and F(x) the marginal distribution function of X. The quantile regression (QR) function of Y on X is defined as r(u) = E[Y | F(X) = u] and the cumulative QR function (CQR) M(u) as its integral over [0, u]. The empirical counterpart based on a sample of size n is M n (u). In this paper, we construct strong Gaussian approximations of the associated CQR process under appropriate assumptions. The construction provides a firm basis for the study of functional statistics based on M in (u). A law of the iterated logarithm for the CQR process follows from our result.  相似文献   

2.
We study the long time behavior of solutions for damped wave equations with absorption. These equations are generally accepted as models of wave propagation in heterogeneous media with space-time dependent friction a(t,x)ut and nonlinear absorption |u|p−1u (Ikawa (2000) [17]). We consider 1<p<(n+2)/(n−2) and separable a(t,x)=λ(x)η(t) with λ(x)∼(1+|x|)α and η(t)∼(1+t)β satisfying conditions (A1) or (A2) which are given. The main results are precise decay estimates for the energy, L2 and Lp+1 norms of solutions. We also observe the following behavior: if α∈[0,1), β∈(−1,1) and 0<α+β<1, there are three different regions for the decay of solutions depending on p; if α∈(−,0) and β∈(−1,1), there are only two different regions for the decay of the solutions depending on p.  相似文献   

3.
If the gradient of u(x) is nth power locally integrable on Euclidean n-space, then the integral average over a ball B of the exponential of a constant multiple of |u(x)−uB|n/(n−1), uB=average of u over B, tends to 1 as the radius of B shrinks to zero—for quasi almost all center points. This refines a result of N. Trudinger (1967). We prove here a similar result for the class of gradients in Ln(log(e+L))α, 0?α?n−1. The results depend on a capacitary strong-type inequality for these spaces.  相似文献   

4.
The general Randi? index R α (G) of a graph G is the sum of the weights (d(u)d(v)) α of all edges uv of G, where α is a real number(α≠0) and d(u) denotes the degree of the vertex u. We have known that P n has minimum general Randi? index for α>0 among trees when n≥5. In this paper, we prove that P n,3 has second minimum general Randi? index for α>0 among trees when n≥7.  相似文献   

5.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

6.
In the first part, we investigate the singular BVP \(\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u\) , u(0) = A, u(1) = B, c D α u(t)| t=0 = 0, where \(\mathcal{H}\) is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems \(\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)\) , u(0) = A, u(1) = B, \(\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0\) where a < 0, 0 < β n α n < 1, lim n→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.  相似文献   

7.
The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0Ω, and where n⋅∇u is known on the boundary.  相似文献   

8.
Consider the set Θ n of all a n -sized increment processes of the uniform empirical process α n on [0, 1]. We assume that a n ↓ 0, na n ↑ ∞, d n = na n (log n)?1 → ∞ and na n (log n)?7/3 = O(1). In Berthet (1996, 2005) the fourth assumption was shown to be critical with respect to the pointwise rates of convergence in the functional law of Deheuvels and Mason (1992) for Θ n because strong approximation methods become ineffective at such a small scale a n . We are now able to study directly these small empirical increments and compute the exact rate of clustering of Θ n to any Strassen function having Lebesgue derivative of bounded variation by making use of a sharp small deviation estimate for a Poisson process of high intensity due to Shmileva (2003a). It turns out that the best rates are of order d n 1/4 (log n)?1 and are faster than in the Brownian case whereas the slowest rates are of order d n ?1/2 and correspond to the apparently crude ones obtained in Berthet (2005) by means of Gaussian small ball probabilities. These different sharp properties of the empirical and Brownian paths imply an almost sure lower bound in the strong invariance principle and provide a new insight into the famous KMT approximation of α n .  相似文献   

9.
Let Gn denote the empirical distribution based on n independent uniform (0, 1) random variables. The asymptotic distribution of the supremum of weighted discrepancies between Gn(u) and u of the forms 6wv(u)Dn(u)6 and 6wv(Gn(u))Dn(u)6, where Dn(u) = Gn(u)?u, wv(u) = (u(1?u))?1+v and 0 ? v < 12 is obtained. Goodness-of-fit tests based on these statistics are shown to be asymptotically sensitive only in the extreme tails of a distribution, which is exactly where such statistics that use a weight function wv with 12 ? v ? 1 are insensitive. For this reason weighted discrepancies which use the weight function wv with 0 ? v < 12 are potentially applicable in the construction of confidence contours for the extreme tails of a distribution.  相似文献   

10.
We consider random self-adjoint Jacobi matrices of the form
(Jωu)(n)=an(ω)u(n+1)+bn(ω)u(n)+an−1(ω)u(n−1)  相似文献   

11.
Szemerédi's theorem states that given any positive number B and natural number k, there is a number n(k, B) such that if n ? n(k, B) and 0 < a1 < … < an is a sequence of integers with an ? Bn, then some k of the ai form an arithmetic progression. We prove that given any B and k, there is a number m(k, B) such that if m ? m(k, B) and u0, u1, …, um is a sequence of plane lattice points with ∑i=1m…ui ? ui?1… ? Bm, then some k of the ui are collinear. Our result, while similar to Szemerédi's theorem, does not appear to imply it, nor does Szemerédi's theorem appear to imply our result.  相似文献   

12.
We introduce the problem of establishing a central limit theorem for the coefficients of a sequence of polynomials Pn(x) of binomial type; that is, a sequence Pn(x) satisfying exp(xg(u)) = ∑n=0 Pn(x)(unn!) for some (formal) power series g(u) lacking constant term. We give a complete answer in the case when g(u) is a polynomial, and point out the widest known class of nonpolynomial power series g(u) for which the corresponding central limit theorem is known true. We also give the least restrictive conditions known for the coefficients of Pn(x) which permit passage from a central to a local limit theorem, as well as a simple criterion for the generating function g(u) which assures these conditions on the coefficients of Pn(x). The latter criterion is a new and general result concerning log concavity of doubly indexed sequences of numbers with combinatorial significance. Asymptotic formulas for the coefficients of Pn(x) are developed.  相似文献   

13.
We consider a convolution-type integral equation u = k ? g(u) on the half line (???; a), a ?? ?, with kernel k(x) = x ???1, 0 < ??, and function g(u), continuous and nondecreasing, such that g(0) = 0 and 0 < g(u) for 0 < u. We concentrate on the uniqueness problem for this equation, and we prove that if ?? ?? (1, 4), then for any two nontrivial solutions u 1, u 2 there exists a constant c ?? ? such that u 2(x) = u 1(x +c), ??? < x. The results are obtained by applying Hilbert projective metrics.  相似文献   

14.
This work is devoted to the analysis of the asymptotic behavior of positive solutions to some problems of variable exponent reaction-diffusion equations, when the boundary condition goes to infinity (large solutions). Specifically, we deal with the equations ??u = u p(x), ??u = ?m(x)u?+?a(x)u p(x) where a(x)??? a 0 >?0, p(x)??? 1 in ??, and ??u = e p(x) where p(x)??? 0 in ??. In the first two cases p is allowed to take the value 1 in a whole subdomain ${\Omega_c\subset \Omega}$ , while in the last case p can vanish in a whole subdomain ${\Omega_c\subset \Omega}$ . Special emphasis is put in the layer behavior of solutions on the interphase ?? i :?= ??? c ???. A similar study of the development of singularities in the solutions of several logistic equations is also performed. For example, we consider ???u = ?? m(x)u?a(x) u p(x) in ??, u = 0 on ???, being a(x) and p(x) as in the first problem. Positive solutions are shown to exist only when the parameter ?? lies in certain intervals: bifurcation from zero and from infinity arises when ?? approaches the boundary of those intervals. Such bifurcations together with the associated limit profiles are analyzed in detail. For the study of the layer behavior of solutions the introduction of a suitable variant of the well-known maximum principle is crucial.  相似文献   

15.
For the problem given by uτ=(ξrumuξ)ξ/ξr+f(u) for 0<ξ<a, 0<τ<Λ, u(ξ,0)=u0(ξ) for 0≤ξa, and u(0,τ)=0=u(a,τ) for 0<τ<Λ, where a and m are positive constants, r is a constant less than 1, f(u) is a positive function such that limucf(u)= for some positive constant c, and u0(ξ) is a given function satisfying u0(0)=0=u0(a), this paper studies quenching of the solution u.  相似文献   

16.
The connectivity index wα(G) of a graph G is the sum of the weights (d(u)d(v))α of all edges uv of G, where α is a real number (α≠0), and d(u) denotes the degree of the vertex u. Let T be a tree with n vertices and k pendant vertices. In this paper, we give sharp lower and upper bounds for w1(T). Also, for -1?α<0, we give a sharp lower bound and a upper bound for wα(T).  相似文献   

17.
This paper considers a general form of the porous medium equation with nonlinear source term: ut=(D(u)uxn)x+F(u), n≠1. The functional separation of variables of this equation is studied by using the generalized conditional symmetry approach. We obtain a complete list of canonical forms for such equations which admit the functional separable solutions. As a consequence, some exact solutions to the resulting equations are constructed, and their behavior are also investigated.  相似文献   

18.
We consider iid Brownian motions, Bj(t), where Bj(0) has a rapidly decreasing, smooth density function f. The empirical quantiles, or pointwise order statistics, are denoted by Bj:n(t), and we consider a sequence Qn(t)=Bj(n):n(t), where j(n)/nα∈(0,1). This sequence converges in probability to q(t), the α-quantile of the law of Bj(t). We first show convergence in law in C[0,) of Fn=n1/2(Qnq). We then investigate properties of the limit process F, including its local covariance structure, and Hölder-continuity and variations of its sample paths. In particular, we find that F has the same local properties as fBm with Hurst parameter H=1/4.  相似文献   

19.
Let an(l): 0 ≤ /denote the reseated empirical process based upon uniform spacings. Let {hn, n ≥ 1 } be a sequence decreasing to 0. Under appropriate conditions on hn. We give a functional lnw of the iterated logarithm for the set of increment functions {an (l + hn.) — an(l): 0 ≤ / ≤ 1 -hn}.  相似文献   

20.
We investigate the existence of nonnegative weak solutions to the problem ut=Δ(um)−p|∇u| in Rn×(0,∞) with +(1−2/n)<m<1. It will be proved that: (i) When 1<p<2, if the initial datum u0D(Rn) then there exists a solution; (ii) When 1<p<(2+mn)/(n+1), if the initial datum u0(x) is a bounded and nonnegative measure then the solution exists; (iii) When (2+mn)/(n+1)?p<2, if the initial datum is a Dirac mass then the solution does not exist. We also study the large time behavior of the L1-norm of solutions for 1<p?(2+mn)/(n+1), and the large time behavior of t1/βu(⋅,t)−Ec(⋅,t)L for (2+mn)/(n+1)<p<2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号