首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using molecular simulations, we show that the aperiodic growth of quasicrystals is controlled by the ability of the growing quasicrystal nucleus to incorporate kinetically trapped atoms into the solid phase with minimal rearrangement. In the system under investigation, which forms a dodecagonal quasicrystal, we show that this process occurs through the assimilation of stable icosahedral clusters by the growing quasicrystal. Our results demonstrate how local atomic interactions give rise to the long-range aperiodicity of quasicrystals.  相似文献   

2.
Quasicrystals can be considered, from the point of view of their electronic properties, as being intermediate between metals and insulators. For example, experiments show that quasicrystalline alloys such as AlCuFe or AlPdMn have conductivities far smaller than those of the metals that these alloys are composed from. Wavefunctions in a quasicrystal are typically intermediate in character between the extended states of a crystal and the exponentially localized states in the insulating phase, and this is also reflected in the energy spectrum and the density of states. In the theoretical studies we consider in this review, the quasicrystals are described by a pure hopping tight binding model on simple tilings. We focus on spectral properties, which we compare with those of other complex systems, in particular, the Anderson model of a disordered metal. We discuss ‘strong‘ and ‘weak’ quasicrystals, which are described by different universal laws. We find similarities and universal behaviour, but also significant differences between quasiperiodic models and models with disorder. Like weakly disordered metals, the quasicrystal can be described by the universal level statistics that can be derived from random matrix theory. These level statistics are only one aspect of the energy spectrum, whose very large fluctuations can also be described by a level spacing distribution that is log-normal. An analysis of spectral rigidity shows that electrons diffuse with a bigger exponent (super-diffusion) than in a disordered metal. Adding disorder attenuates the singular properties of the perfect quasicrystal, and leads to improved transport. Spectral properties are also used in computing conductances of such systems, and to attempt to resolve the experimental enigmas such as whether quasicrystals are intrinsically conductors, and if so, how conductances depend on the structure.  相似文献   

3.
The total and partial vibrational spectra of aluminum, copper, and iron atoms in an Al-Cu-Fe icosahedral quasicrystal are calculated by the recursive method. The calculations are based on the 1/1 crystal approximant. The interaction of atoms in the Al-Cu-Fe quasicrystal is described within the EAM model. The calculated spectra are in satisfactory agreement with the experimental data on neutron inelastic scattering.  相似文献   

4.
Since quasicrystals have positional and orientational long-range order, they are essentially anisotropic. However, the researches show that some physical properties of quasicrystals are isotropic. On the other hand, quasicrystals have additional phason degrees of freedom which can influence on their physical behaviours. To reveal the quasicrystal anisotropy, we investigate the quasicrystal elasticity and other physical properties, such as thermal expansion, piezoelectric and piezoresistance, for which one must consider the contributions of the phason field. The results indicate that: for the elastic properties, within linear phonon domain all quasicrystals are isotropic, and within nonlinear phonon domain the planar quasicrystals are still isotropic but the icosahedral quasicrystals are anisotropic. Moreover, the nonlinear elastic properties due to the coupling between phonons and phasons may reveal the anisotropic structure of QCs. For the other physical properties all quasicrystals behave like isotropic media except for piezoresistance properties of icosahedral quasicrystals due to the phason field.  相似文献   

5.
李翠莲  刘有延 《中国物理》2004,13(6):924-931
According go the group representation theory, we derive the character formulae of representation-matrices of the期physical property gensors for the one-dimensional (1D) quasicrysgals. Based on this, we have calculated the numbers of independent components of representation-matrices for thermal expansion coefficient gensors, piezoelectric coefficient tensors and elastic constant tensors under 31 point-groups for the 1D quasicrystals. Moreover, we have deduced the particular matrix forms of these gensors under the 31 point-groups. This is an important complement of quasicrysgal physical property.  相似文献   

6.
Al-Cu-Fe thin films were prepared by laser induced arc (laser-arc) method from a single source-Al63Cu25Fe12 alloy, which was proved to consist of quasicrystalline phase together with approximant phase. The composition of the deposited films meets the requirement for formation of icosahedral symmetry phase. Quasicrystalline phase was obtained after annealing the amorphous as-deposit film samples. The optical properties of the samples were investigated. Thin film samples of Al, Cu and Fe deposited under the same condition were employed for comparison. The results showed specific reflective properties of Al-Cu-Fe quasicrystal thin film in some wavelength range. The optical conductivity of the films exhibited a negative peak, centered about 440 nm in range of 190to 800 nm. The Al-Cu-Fe quasicrystal thin films could absorb almost all the ray in the wavelength range from 420nm to 450 nm. The ratio of absorption was greater than 99%.  相似文献   

7.
This Letter presents a study of the local density of states (LDOS) in photonic quasicrystals. We show that the LDOS of a Penrose-type quasicrystal exhibits small additional band gaps. Among the band gaps, some exhibit a behavior similar to that typical of photonic crystals, while others do not. The development of certain band gaps requires large-size quasicrystals. It is explained by the long-range interactions involved in their formation. Moreover, the frequencies where the band gaps occur are not necessarily explained using single scattering and should therefore involve multiple scattering.  相似文献   

8.
We investigated cleavage surfaces perpendicular to the tenfold direction of as-grown decagonal Al-Ni-Co quasicrystals by scanning tunneling microscopy, Auger electron spectroscopy, and scanning electron microscopy. The cleavage surface is determined by a cluster-subcluster structure. The image contrast of the smallest features, 1-2 nm in diameter, is related to the columnar atom arrangements extending perpendicular to the cleavage plane, which are predicted by current models of the decagonal quasicrystal structure. No voltage dependence of the STM images is observed. The presence of surface states and an enhanced density of states are discussed. Heat-treatments of the cleaved Al-Ni-Co quasicrystal surfaces show nearly no changes in chemical composition and structure up to about 750 °C. This is correlated with a much lower concentration of vacancies in as-grown decagonal Al-Ni-Co quasicrystals as compared to that in as-grown icosahedral Al-Pd-Mn quasicrystals.  相似文献   

9.
We introduce graded photonic quasicrystals and investigate properties of such structures on the example of a Luneburg lens based on a dodecagonal photonic quasicrystal. It is shown that the graded photonic quasicrystal lens has better focusing properties as compared with the graded photonic crystal lens in a frequency range suitable for experimental realization. The proposed graded photonic quasicrystals can be used in optical systems where compact and powerful focusing elements are required.  相似文献   

10.
Electron spectra and wave functions of icosahedral quasicrystals have been investigated in the tight-binding approximation using the two-fragment structural model (the Amman-MacKay network) with “central” decoration. A quasicrystal has been considered as a limiting structure in a set of optimal cubic approximants with increasing lattice constants. The method of level statistics indicates that the energy spectrum of an icosahedral quasicrystal contains a singular (nonsmooth) component. The density of electron states has been calculated for the first four optimal cubic approximants of the icosahedral quasicrystal, and the respective Lebesgue measures of energy spectra of these approximants have been obtained. Unlike the case of a one-dimensional quasiperiodic structure, the energy spectrum of an icosahedral quasicrystal does not contain a hierarchical gap structure typical of the Cantor set of measure zero in a one-dimensional quasicrystal. Localization of wave functions in an icosahedral quasicrystal has been studied, and their “critical” behavior has been detected. The effect of disorder due to substitutional impurities on electron properties of icosahedral quasicrystals has been investigated. This disorder makes the electron spectrum “smoother” and leads to a tendency to localization of wave functions. Zh. éksp. Teor. Fiz. 113, 1009–1025 (March 1998)  相似文献   

11.
准晶是一种拥有长程序但不具有周期性结构的一种物质.实验上通过将玻色-爱因斯坦凝聚体(BEC)放置在一个由四个光学腔组成的系统中,通过四个腔中激光照射在凝聚体上从而得到具有八重旋转对称性的准晶.本文结合虚时演化方法和分步傅里叶法从理论上得到了八重准晶体.我们通过这种方法可以实现更为复杂的晶体结构,从而为将来探索新物质提供了可能.  相似文献   

12.
A model is developed for describing phason defects in quasicrystals in the form of dilation filaments. This model is used to calculate the energy of edge dislocations in quasicrystals including the interaction of this type of dislocation with its “intrinsic” phason defects and with the equilibrium phason defects present in a quasicrystal. It is shown that the contribution of “intrinsic” phason defects to the total energy of an edge dislocation in a quasicrystal is substantial. Fiz. Tverd. Tela (St. Petersburg) 39, 2003–2007 (November 1997)  相似文献   

13.
《Physics letters. A》2006,358(1):37-38
We predict the external radiation with a frequency half the frequency of alternating Josephson effect to appear when a constant voltage is applied to a quasicrystal–quasicrystal tunneling junction. Thus the phenomenon typical for superconductor–superconductor junctions can be realized for a non-superconducting object. The physical background for this possibility is the “critical” behavior of the wave functions in quasicrystals and electron scattering on a quasiperiodic potential. The effect opens an avenue for new applications of quasicrystals.  相似文献   

14.
C. Ghosh 《Surface science》2006,600(10):2220-2230
Scanning tunneling microscopy experiments have previously revealed the formation of pseudomorphic starfish-shaped islands during the initial stages of Al deposition on 5-fold icosohedral Al-Cu-Fe quasicrystal surfaces. To simulate this process, we first identify appropriate 5-fold surface terminations of Al-Cu-Fe from a model for bulk structure, and construct associated potential energy surfaces for the binding of Al adatoms on these terminations. We then identify a ‘disordered-bond-network’ (DBN) connecting neighboring local adsorption sites for Al on Al-Cu-Fe, and determine site binding energies as well as activation barriers for Al adatom hopping between neighboring sites. Al-Al adsorbate interactions, which stabilize islands, are also prescribed. Then, within the framework of a DBN lattice-gas model, we simulate the deposition and diffusion of Al on Al-Cu-Fe. We explore the competition between starfish and incomplete starfish ensembles of sites (which provide traps in the form of deep potential energy wells for diffusing Al) and isolated trap sites, with regard to the heterogeneous nucleation and aggregation of Al into islands.  相似文献   

15.
We study the phase diagram of a two-dimensional random tiling model for quasicrystals. At proper concentrations the model has 8-fold rotational symmetry. Landau theory correctly gives most of the qualitative features of the phase diagram, which is in turn studied in detail numerically using a transfer matrix approach. We find that the system can enter the quasicrystal phase from many other crystalline and incommensurate phases through first-order or continuous transitions. Exact solutions are given in all phases except for the quasicrystal phase, and for the phase boundaries between them. We calculate numerically the phason elastic constants and entropy density, and confirm that the entropy density reaches its maximum at the point where phason strains are zero and the system possesses 8-fold rotational symmetry. In addition to the obvious application to quasicrystals, this study generalizes certain surface roughening models to two-dimensional surfaces in four dimensions.  相似文献   

16.
Based on the variational principle, a continuum theory of surface elasticity and new boundary conditions for qua- sicrystals is proposed. The effect of the residual surface stress on a decagonal quasicrystal that is weakened by a nanoscale elliptical hole is considered. The explicit expressions for the hoop stress along the edge of the hole are obtained using the Stroh formalism. The results show that the residual surface stress and the shape of the hole have a significant effect on the elastic state around the hole.  相似文献   

17.
The Al3Cu4 alloy, with an e/a ratio of 1.86 being close to ternary Al-Cu-TM (transition metal) quasicrystals, has been chosen for the search of Al-Cu approximants. Phase structures and compositions were studied using TEM, X-ray diffraction and EPMA techniques. Two new phases were found: face-centered orthorhombic oF-Al43.2Cu56.8 (a = 0.816(6), b = 1.414(9), c = 0.999(5) nm) and body-centered orthorhombic oI-Al41.3Cu58.7 (oI, a = 0.408(3), b = 0.707(4), c = 0.999(5) nm). Their e/a ratios are the same as that of the Al-Cu-Fe icosahedral quasicrystal. Both are B2 superstructures and their unit cell components can be expressed approximately as oF-Al36Cu48vacancies12 and oI-Al8Cu12vacancies4. They both exist in twinning variants of the types 120 degrees/[001] and 180 degrees/[310]. Such twinning modes indicate that these orthorhombic phases are the decomposition products of a high-temperature parent phase epsilon2-Al2Cu3, the atomic structure of which shows pentagonal atomic arrangements. Further analysis on the twinning modes of oF and oI leads to the recognition of the chemical-twinning mode of the basic B2 structure as 180 degrees/(111)B2. This kind of chemical twinning mode is responsible for the pentagonal atomic configuration in the Al-Cu approximants as well as for the pseudo-5-fold B2 twinning.  相似文献   

18.
We derive a generalized Drude formula for the optical conductivity of quasicrystals, assuming a diffusion law in a perfect quasicrystal L(t) approximately t(beta), where L(t) measures the spreading of a wave packet in a time t. We show that the so-called Drude peak in the optical conductivity, characteristic of metals, is strongly modified. If beta<1/2 the Drude peak is even replaced by a dip and the dc conductivity increases when disorder increases. An interpretation of the experimental results on icosahedral and decagonal phases is proposed.  相似文献   

19.
We present a new general mechanism for a dynamical generation (growth) of quasicrystals (and crystals) in any dimension. The growth process proceeds in elementary steps starting from a chosen seed and the notion of an ideal local configuration. Each step is governed by local information inside of the physical space of the quasicrystal: A point is added to existing quasicrystal points only if its locally defined phase matches at that point a freely chosen continuous phase (gauge) in the quasicrystal space within a given precision. Some 2D examples are shown.Work supported in part by the Natural Science and Engineering Research Council of Canada and by the FCAR of Quebec.  相似文献   

20.
For the study of crystal formation and dynamics, we introduce a simple two-dimensional monatomic model system with a parametrized interaction potential. We find in molecular dynamics simulations that a surprising variety of crystals, a decagonal, and a dodecagonal quasicrystal are self-assembled. In the case of the quasicrystals, the particles reorder by phason flips at elevated temperatures. During annealing, the entropically stabilized decagonal quasicrystal undergoes a reversible phase transition at 65% of the melting temperature into an approximant, which is monitored by the rotation of the de Bruijn surface in hyperspace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号