首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Single Crystal Structure Determinations of the Cubic High Pressure Elpasolites Rb2LiFeF6 and Cs2NaFeF6: Pressure-Distance Paradox without Change of Coordination Number At single crystals of metastable high pressure phases of Rb2LiFeF6 (a = 824.4 pm) and Cs2NaFeF6 (a = 873,9 pm) the parameters of the cubic elpasolite structure (Fm3 m, Z = 4) were determined by X-ray methods. Compared to the 12L-structures of the normal pressure phases (R3 m, hex. Z = 6) only the distances within the 12-coordination, Rb? F = 291.7 resp. Cs? F = 309.9 pm, are compressed by 2–3%. However, the octahedral distances Fe? F = 194.6 pm and Li? F = 217.6 pm resp. Fe? F = 194.9 pm and Na? F = 242.0 pm, are enlarged by 1–4%, though there was no increase in coordination number. This paradoxical behaviour is discussed. Difference Fourier syntheses reveal disorder only for the lithium positions in Rb2LiFeF6, which are 30 pm off-center, corresponding to a splitting of distances Li? F into 188, 247 and 4 × 220 pm.  相似文献   

2.
Crystalline Cs2KMnF6, when prepared below 500°C, adopts a tetragonal elpasolite structure type. Differential scanning calorimetric investigations indicated that Cs2KMnF6 undergoes a phase transition from the low-temperature tetragonal phase (LT) to a high-temperature phase (HT) at about 530°C. Single crystals of the new HT phase could be obtained by annealing a crystalline LT specimen at 600°C followed by rapid quenching to room temperature. In the present study the structures of both phases have been studied by single-crystal X-ray diffraction techniques. The LT phase has the tetragonal space group symmetry I4/mmm, with unit-cell parameters a=6.319(1) (a· =8.936) and c=9.257(2) Å, and Z=2. The HT phase has the cubic symmetry Fm3m, with the cell parameter a=9.067 Å and Z=4. Structural models of the LT and HT phases have been refined vs collected single-crystal X-ray reflection data to R values of 0.034 and 0.022, respectively. The uneven Mn–F bond distance distribution in the LT form, four bonds of 1.860(6) two of 2.034(9) Å, are typical for an octahedrally coordinated high-spin Mn3+ ion affected by Jahn–Teller effects. Due to symmetry constraints, all six octahedral Mn–F bonds in the HT form are equal to 1.931(5) Å. However, the mean square atomic displacement parameters of the fluorine atoms increases significantly from about 0.022 Å2 for the LT phase to 0.042 Å2 for the HT phase. The increased displacement parameters indicate that the phase transition from the LT to the HT form is associated with a directional disorder of the Jahn–Teller distortions around the Mn3+ ions.  相似文献   

3.
The stannides ErAgSn and TmAgSn have been investigated under high‐temperature (HT) and high‐pressure (HP) conditions in order to investigate their structural chemistry. ErAgSn and TmAgSn are dimorphic: normal‐pressure (NP) ErAgSn and HT‐TmAgSn crystallize into the NdPtSb type structure, P63mc, a = 466.3(1), c = 729.0(2) pm for NP‐ErAgSn and a = 465.4(1), c = 726.6(2) pm for HT‐TmAgSn. NP‐ErAgSn was obtained via arc‐melting of the elements and subsequent annealing at 970 K, while HT‐TmAgSn crystallized directly from the melt by rapidly quenching the arc‐melted sample. HT‐TmAgSn transforms to the ZrNiAl type low‐temperature modification upon annealing at 970 K. The high‐pressure (HP) modification of ErAgSn was synthesized under multianvil high‐pressure (11.5 GPa) high‐temperature (1420 K) conditions from NP‐ErAgSn: ZrNiAl type, , a = 728.7(2), c = 445.6(1) pm. The silver and tin atoms in NP‐ErAgSn and HT‐TmAgSn build up two‐dimensional, puckered [Ag3Sn3] networks (277 pm intralayer Ag–Sn distance in NP‐ErAgSn) that are charge‐balanced and separated by the erbium and thulium atoms. The fourth neighbor in the adjacent layer has a longer Ag–Sn distance of 298 pm. The [AgSn] network in HP‐ErAgSn is three‐dimensional. Each silver atom has four tin neighbors (281–285 pm Ag–Sn). The [AgSn] network leaves distorted hexagonal channels, which are filled with the erbium atoms. The crystal chemistry of the three phases is discussed.  相似文献   

4.
Syntheses and Crystal Structures of Rb4Br2O and Rb6Br4O In the quasi‐binary system RbBr/Rb2O, the addition compounds Rb4Br2O and Rb6Br4O are obtained by solid state reaction of the boundary components RbBr and Rb2O. Crystals of red‐orange Rb4Br2O as well as of orange Rb6Br4O decompose immediately when exposed to air. Rb4Br2O (Pearson code tI14, I4/mmm, a = 544.4(6) pm, c = 1725(2) pm, Z = 2, 175 symmetry independent reflections with Io > 2σ(I), R1= 0.0618) crystallizes in the anti K2NiF4 structure type; Rb6Br4O (Pearson code hR22, R3c, a = 1307.8(3) pm, c = 1646.6(5) pm, Z = 6, 630 symmetry independent reflections with Io > 2σ(I), R1 = 0.0759) in the anti K4CdCl6 structure type. Both structures contain characteristic ORb6‐octahedra and can be understood as expanded perovskites, following the general systematics of alkaline metal oxide halides.  相似文献   

5.
The crystal structure of K6[CdO4] and Rb2CdO2 has been determined from single crystal X-ray diffraction data and refined toR=0.058 (K6[CdO4]) andR=0.088 (Rb2CdO2). K6[CdO4] crystallizes hexagonal, space group P63mc with lattice constantsa=867.42 (6),c=665.5 (1) pm,c/a=0.767 andZ=2. It is isotypic with Na6[ZnO4]. Rb2CdO2 is orthorhombic, space group Pbcn witha=1045.0 (2),b=629.1 (1),c=618.3 (1) pm,Z=4, and crystallizes with the K2CdO2 structure type. The crystal structures can be deduced from the motif of a closest packed arrangement of O2– with hexagonal (K6[CdO4]) or cubic (Rb2CdO2) stacking. The tetrahedra occupied by Cd2+ are isolated (K6[CdO4]) or edge-shared (formation of infinite SiS2-like chains [CdO4/2]) (Rb2CdO2). The powder diffraction pattern of Rb6[CdO4] [a=906.6 (1),c=694.3 (1) pm] and Rb2Cd2O3 [a=642.6 (2),b=679.0 (1),c=667.9 (2) pm, =115.2 (1)] confirm isotypie with K6[CdO4] and K2Cd2O3 respectively.
Herrn Prof. Dr.Gutman zum 65. Geburtstag gewidmet.  相似文献   

6.
Preparation of Crystal Structure of K6[Al2O6] and Rb6[Al2O6] Colourless single crystals of K6[Al2O6] have been prepared from intimate mixtures of KAlO2 and K2O (550°C, 90 d). The structure determination from four-circle diffractometer data (MoKα , 742 Io(hkl), R = 2.2%, Rw = 2.1%) confirms the space group C2/m with Z = 2; a = 698.25 pm, b = 1 103.54 pm, c = 646.49 pm, β = 102.49°. Colourless single crystals of hitherto unknown Rb6[Al2O6] have been prepared from intimate mixtures of RbAlO2 and Rb2O (520°C, 120 d). The structure determination from four-circle diffractometer data (MoKα , 1 240 Io(hkl)) results in the residual values R = 7.2%, Rw = 4.9%; space group C2/m; a = 725.92 pm, b = 1 143.33 pm, c = 678.06 pm, β = 104.05°; Z = 2. K6[Al2O6] and Rb6[Al2O6] are isostructural with K6[Fe2O6]. A characteristic structure unit is the anion [Al2O6]6? consisting of two edge-sharing [AlO4] tetrahedra. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), the Madelung Part of Lattice Energy (MAPLE) and the Charge Distribution (CHARDI) are calculated and discussed.  相似文献   

7.
Rb2Mn3O4, which is the first rubidium oxomanganates(II), has been synthesized via the azide/nitrate route from a stoichiometric mixture of the precursors RbN3, RbNO3, and MnO, as well as from Rb2O and MnO, through an all solid state reaction. Its crystal structure (C2/c, Z = 4, a = 1546.9(2) pm, b = 666.22(7) pm, c = 588.06(6) pm) consists of a 3D arrangement of edge‐ and corner‐sharing MnO4 tetrahedra with rubidium filling the space between. Magnetic susceptibility measurements indicate a magnetic phase transition at 126 K. The magnetic response as a function of temperature is complex, indicating strong, partly frustrated magnetic exchange interactions.  相似文献   

8.
The Adduct of BiCl3 and Mo6Cl12: [BiCl] Dumbbells in the Structure of [BiCl][Mo6Cl14] MoCl3 reacts under decomposition to MoCl2 and Cl2 with BiCl3 in a sealed evacuated glass ampoule at 550 °C to form light red crystals of [BiCl][Mo6Cl14]. The crystal structure determination (monoclinic, C 2/c, a = 1268.1(4) pm, b = 1304.6(3) pm, c = 2571.9(8) pm, β = 91.79(3)°, Z = 8) shows that the structure is built of [(Mo6Cl8)Cl6] units containing nearly regular octahedral Mo6 clusters. These units are arranged in the motiv of a cubic closest packing. The octahedral interstices contain [BiCl] dumbbells with a Bi–Cl bond length of 249 pm. The coordination sphere of the Bi atom is completed by six weaker Bi–Cl-contacts of 275 to 308 pm length to a distorted monocapped trigonal prism. Neglecting the secondary Bi–Cl bonds, the title compound can be formulated as [(BiCl)2+][(Mo6Cl14)2–].  相似文献   

9.
The Isotypic Compounds BaRh2Si2, BaIr2Si2, and BaPt2Ga2 – a Monoclinic Distortion Variant of the CaRh2B2 Structure The new compounds BaRh2Si2 (monoclinic, P21/c, a = 792.6(1) pm, b = 664.5(7) pm, c = 767.9(4) pm, β = 91.2(1)°, Z = 4, 2867 reflexions, 47 parameters, R = 0.024), BaIr2Si2 (monoclinic, P21/c, a = 792.47(6) pm, b = 664.28(6) pm, c = 772.22(6) pm, β = 92.181(7)°, Z = 4, 1939 reflexions, 47 parameters, R = 0.037) and BaPt2Ga2 (monoclinic, P21/c, a = 850.4(1) pm, b = 647.3(1) pm, c = 819.8(1) pm, β = 95.97(1)°, Z = 4, 1506 reflexions, 47 parameters, R = 0.038) were prepared by reaction of the elements. Their structures were determined from single crystal data. The compounds crystallize isotypically with a distortion variant of the CaRh2B2 type of structure.  相似文献   

10.
Preparation and Structure of (2‐Methylpyridinium)3[TbCl6] and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] The complex chlorides (2‐Methylpyridinium)3[TbCl6] (1) and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] (2) have been prepared for the first time. The crystal structures have been determinated from single crystal X‐ray diffraction data. 1 crystallizes in the monoclinic space group C2/c (Z = 8) with a = 3241,2(5) pm, b = 897,41(9) pm, c = 1774,2(2) pm and β = 97,83(2)°, 2 in the monoclinic space group P21/n (Z = 4) with a = 1372,96(16) pm, b = 997,57(9) pm, c = 1820,5(2) pm and β = 108,75(1)°. The structures contain isolated octahedral building units [TbCl6]3– and [TbCl5(1‐Butanol)]2–, respectively.  相似文献   

11.
A New Lead Strontium Ferrate(III): The Crystal Structure of the Phase Pb4Sr2Fe6O15 At orthorhombic single crystals of Pb4Sr2Fe6O15 (a = 568.73(8), b = 392.03(4), c = 2107.5(3) pm; Z = 4/3, space group Pnma) a X-ray structure determination has been performed (R1 = 0,036 for 488 ?observed”? resp. wR2 = 0,073 for all 643 independent reflexions). It revealed a framework of polyhedra related to perovskite, in which chains of edgesharing pyramids [FeO5] (average Fe1? O: 197 pm; Fe1? Fe1: 305.5 pm) are linked via apices with corner-sharing [FeO6] octahedra (Fe2? O: 201 pm). 12–fold, strongly distorted cuboctahedrally coordinated ?perovskite positions”? show mixed occupancy by 2/3 Sr + 1/3 Pb (= Sr2; Sr2? O: 287 pm). More spacy channels, running parallel to the chains of pyramids along [010] of the structure, contain lead atoms only. The double occupancy of the corresponding cages results in short distances Pb1? Pb1 (355.9 pm) and Pb1? Fe2 (314.4 pm), as well as in a very asymmetric [PbO6] coordination (Pb1? O: 253 pm), in the opposite hemisphere of which the lone electron pair s2 is supposed to be located. Details are communicated and structural relations discussed.  相似文献   

12.
The pyrophoric compound Rb2[U(NH2)6] was obtained as a grey to black powder from the reaction of more than three equivalents of RbNH2 with UI3 in anhydrous liquid ammonia. During the process, UIII is oxidized to UIV and ammonia is reduced under evolution of H2. Rb2[U(NH2)6] crystallizes in the cubic crystal system, space group Fm3 m, with the lattice parameter a = 9.7870(12) Å, V = 937.4(2) Å3, Z = 4 at T = 293 K. It is isotypic to K2PtCl6. The compound contains the unprecedented hexaamidouranate(IV) anion [U(NH2)6]2–.  相似文献   

13.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

14.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

15.
Crystal Structural Studies of the Alkali and Barium Transition Metal Fluorides RbK2Mn2F7, BaNiF4, and a 5 : 3-Phase of the System BaLiF3/NaCoF3 At single crystals of the compounds RbK2Mn2F7, BaNiF4, and of a phase 0.618 BaLiF3/0.382 NaCoF3 the X-ray crystal structures were refined. RbK2Mn2F7 is tetragonal (a = 421.1(1), c = 2188.3(2) pm, I4/mmm, Z = 2) and belongs to the Sr3Ti2O7 type. The average distances are Mn–F: 210.7 pm for the [MnF6] octahedron and A–F: 290.6 resp. 297.1 pm for the [AF9] resp. [AF12] coordination of the mixed alkali positions (A = Rb/3 + 2 K/3). BaNiF4 (a = 413.7(1), b = 1443.1(3), c = 578.1(1) pm, Cmc21, Z = 4) is of the orthorhombic BaZnF4 type; Ni–F: 200.3 pm, Ba–F: 274.3 pm for CN6 and CN9, resp.. The phase of approximate composition 5 : 3, isolated from a 1 : 1 batch BaLiF3/NaCoF3, is cubic (a = 801.8(1) pm, Im3, Z = 8 AMF3) and forms a strongly disordered perovskite super-structure, the features of which are discussed.  相似文献   

16.
Reactions of Lanthanide Halides with Alkalibenzyl Compounds. Synthesis and Crystal Structures of [(tmeda)(C6H5CH2)2Y(μ-Br)2Li(tmeda)], [(tmeda)2SmBr(μ-Br)2Li(tmeda)] and [(dme)2SmBr(μ-Br)]2 Alkali-benzyl compounds react via a metathesis reaction with lanthanide halides to benzyl complexes of the rare earths. Reaction of [(C6H5CH2)Li(tmeda)] with YBr3 leads to the complex [(tmeda)Y(C6H5CH2)2 (μ-Br)2Li(tmeda)] 1 , in which Yttrium and lithium are linked via two bromide bridges. However, the reaction of [(C6H5CH2)Li(tmeda)] with SmBr3 in toluene/tmeda leads under reduction of the Sm ion to the compound [(tmeda)2SmBr(μ-Br)2Li(tmeda)] 2 . 2 reacts with DME to yield the dimeric compound [(dme)2SmBr(μ-Br)]2 3 . The structures of 1 – 3 were determined by X-ray single crystal structure analysis:
  • 1: Space group P21/c, Z = 4, a = 829.5(6) pm, b = 1477.9(11) pm, c = 2575.0(10) pm, β = 92.03(6)°,
  • 2: Space group P21, Z = 2, a = 954,7(3) pm, b = 1338.5(6) pm, c = 1244.9(5) pm, β = 107.51(3)°,
  • 3: Space group P1 , Z = 1, a = 797.2(7) pm, b = 818.3(7) pm, c = 1169.7(8) pm, α = 100.96(6)°, β = 92.03(6)°, γ = 91.75(7)°.
  相似文献   

17.
On X-Ray Single Crystal Studies of Na2FeAlF7, Na2MIIGaF7 (MII = Ni, Zn), and Na2ZnFeF7 and the Structural Chemistry of Weberites At single crystals of the orthorhombic weberite Na2NiGaF7 (a = 716.1, b = 1021.6, c = 740.9 pm; Imma, Z = 4) and of the monoclinic variants (C2/c, Z = 16) Na2FeAlF7 (a = 1242.6, b = 727.8, c = 2420.6 pm, β = 99.99°), Na2ZnGaF7 (a = 1251.9, b = 730.3, c = 2435.3 pm, β = 99.74°) and Na2ZnFeF7 (a = 1261.0, b = 7.359, c = 2453.8 pm, β = 99.70°) complete X-ray structure determinations were performed. The results and the influence of radii on the bridge angles MII–F–MII and MII–F–MIII are discussed in connection with general features within the structural chemistry of 28 weberites.  相似文献   

18.
Cesium Chromium Halides Cs3CrCl6, Cs3Cr2Cl9, and Cs3CrBr6 – Preparation, Properties, Crystal Structure The crystal structures of Cs3CrCl6 and Cs3Cr2Cl9 were determined and redetermined by X‐ray single‐crystal studies (space group Pnnm, Z = 6, a = 1115.6(2) pm, b = 2291.3(5) pm, c = 743.8(1) pm, Rf = 7.73%, 1025 unique reflections with I > 2σ(I) (Cs3CrCl6); P63/mmc, Z = 2, a = 721.7(2) pm und c = 1791.0(1) pm; Rf = 2.06%, 395 unique reflections with I > 2.5σ(I) (Cs3Cr2Cl9). The structure of Cs3CrCl6 consists of two different isolated CrCl6 octahedra and five crystallographic different Cs+ ions. The CrCl6 octahedra form ropes in the direction [001]. Because of orientational disordering of the Cr(1)Cl6 octahedra and the an only half‐occupation of some cesium and chlorine sites Cs3CrCl6 is strongly disordered in direction of the (020) plane. The ionic conductivity of Cs3CrCl6, which was expected owing to the great disorder, however, is with 7.3 × 10–5 Ω–1 cm–1 at 740 K relatively small. The compound Cs3CrBr6, which was firstly prepared by quenching stoichiometric amounts of CsBr and CrBr3 from 833 K, is metastable at ambient temperature. It is probably isostructural to Cs3CrCl6 as shown by X‐ray powder photographs.  相似文献   

19.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

20.
MoCl4, ReCl4, and ReCl5 react with PCl5 in sealed glass ampoules at temperatures between 220° and 320° to [PCl4]2[Mo2Cl10] ( 1 ) [PCl4]2[Re2Cl10] ( 2 ), and [PCl4]3[ReCl6]2 ( 3 ). 2 crystallizes isotypically to the previously reported 1 and the respective titanium and tin containing analogues. The structure (triclinic, P1, Z = 1, a = 897.3(2), b = 946.0(2), c = 687.13(9) pm, α = 95.59(2)°, β = 95.80(2)°, γ = 101.07(2)°, V = 565.4(2) 106 pm3) is built of tetrahedral [PCl4]+ and edge sharing double octahedral [Re2Cl10]2– ions and can be derived from a hexagonal closest packing of Cl ions with tetrahedral and octahedral holes partially filled by P(V) and Re(IV), respectively. 3 crystallizes isotypically to [PCl4]3[PCl6][MCl6] (M = Ti, Sn) (tetragonal, P 42/mbc, Z = 4, a = 1496.2(1), c = 1363.2(2) pm). Because no evidence was found for the presence of [PCl6] ions, Re in 3 has to be of mixed valency with ReIV and ReV sharing the same crystallographic site. The structure can be derived from a cubic closest packing or alternatively from an only sparsely distorted body centered cubic arrangement of Cl ions which is rarely found for anion arrays. The tetrahedral and octahedral holes are partially filled by PV and MIV/V, respectively. Magnetic measurements show all three compounds to be paramagnetic and confirm the oxidation state IV for Mo and Re in 1 and 2 and the mixed valence (IV/V) for Re in 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号