首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The Lyapunov stability is analysed for a class of integro-differential equations with unbounded operator coefficients. These equations arise in the study of non-conservative stability problems for viscoelastic thin-walled elements of structures. Some sufficient stability conditions are derived by using the direct Lyapunov method. These conditions are formulated for arbitrary kernels of the Volterra integral operator in terms of norms of the operator coefficients. Employing these conditions the supersonic flutter of a viscoelastic panel is studied and explicit expressions for the critical gas velocity are derived. Dependence of the critical flow velocity on the material characteristics and compressive load is analysed numerically.  相似文献   

2.
We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier–Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.  相似文献   

3.
In an arbitrary Banach space we consider the Cauchy problem for an integro-differential equation with unbounded operator coefficients. We establish the solvability of the problem in the weight spaces of integrable functions under certain conditions on the data. To prove this, the solution of the problem is written in explicit form with the help of analytic semigroups generated by fractional powers of the operator coefficients. Here an important role is played by the conditions on the coefficients ensuring the coercive estimates of the corresponding integral operators. Translated fromMatematicheskie Zametki, Vol. 66, No. 6, pp. 887–896, December, 1999.  相似文献   

4.
In this paper, the exponential RED algorithm with heterogeneous delays is considered. Local stability of the equilibrium solution of this algorithm is investigated based on analyzing the corresponding transcendental characteristic equation. Some general stability criteria involving the delays and the system parameters are derived by using generalized Nyquist criteria. In particular, using one of the delays as the bifurcation parameter, when the delays exceed a critical value, the exponential RED system undergoes a supercritical Hopf bifurcation. The explicit formulas determining the stability and the direction of periodic solutions bifurcating from the equilibrium are obtained by applying Hassard et al’s approaches. Finally, some numerical simulations are performed to verify the theoretical results.  相似文献   

5.
In the paper the dynamic stability of a simply supported viscoelastic bar of the Zener material model is investigated. The bar is subjected to a parametric excitation of a periodic nature. The physical model of the system is of the continuous type. However, the proposed approach yields a transformation of the mathematical model from the partial differential equation to an ordinary one. Such a transformation is made possible by the use of an approximation function for the bending line of the bar. This way, the system is governed by a homogeneous, ordinary differential equation of the third order with periodic coefficients. For stability studies the Floquet theory is applied. A sensitivity analysis of a parametric periodic system is discussed, i.e. the influence of stiffness and damping coefficient of the Zener model on stability of the differential equation that describes the vibration of the viscoelastic bar. Furthermore the stabilization process of an unstable parametric system was realized. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
桩侧摩阻力对打入桩定向稳定性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在本文中,把打桩时桩顶的锤击力作为一种周期荷载而导得Mathieu方程.从该方程的稳定界限,我们可求得桩的临界长度,也讨论了桩侧摩阻力对定向稳定性的影响.  相似文献   

7.
An initial value method for the integral equation of the column is presented for determining the buckling load of columns. The differential equation of the column is reduced to a Fredholm integral equation. An initial value problem is derived for this integral equation, which is reduced to a set of ordinary differential equations with prescribed initial conditions in order to find the Fredholm resolvent. The singularities of the resolvent occur at the eigenvalues. Integration of the equations proceeds until the integrals become excessively large, indicating that a critical load has been reached. To check this method, numerical results are given for two examples, for which the critical load is well known. One is the Euler load of a simply supported beam, and the other case is the buckling load of a cantilever beam under its own weight. The advantage of this initial value method is that it can be applied easily to solve other nonlinear problems for which the critical loads are unknown. This approach will be illustrated in future papers.  相似文献   

8.
The stability of a system described by Volterra integrodifferential equations is investigated in the critical case when the characteristic equation has a pair of pure imaginery roots. Conditions for instability, analogous to the well-known conditions from the theory of differential equations [1], are derived. (A similar result was established previously in [2] for integrodifferential equations of simpler structure with integral kernels of exponential-polynomial type). For the proof, several manipulations are used to simplify the original equation and, in particular, to reduce the linearized equation to the form of a differential equation with constant diagonal matrix. (An analogous approach was used to analyse instability for Volterra integrodifferential equations in the critical case of zero root in [3, 4]). As an example, the sign of the Lyapunov constant in the problem of the rotational motion of a rigid body with viscoelastic supports is calculated.  相似文献   

9.
This work deals with a scalar nonlinear neutral delay differential equation issued from the study of wave propagation. A critical value of the coefficients is considered, where only few results are known. The difficulty follows from the fact that the spectrum of the linear operator is asymptotically closed to the imaginary axis. An analysis based on the energy method provides new results about the asymptotic stability of constant and periodic solutions. A complete analysis of the stability diagram is given in the linear homogeneous case. Under periodic forcing, existence of periodic solutions is discussed, involving a Diophantine condition on the period of the source.  相似文献   

10.
A linear equation for a particle steady-state transport process in a homogeneous slab of finite thickness with boundary conditions of general type is derived. This equation differs from the well-known integral equation for no-reentry boundary conditions because of the presence of a per-turbance linear operator which describes the effect of the re-emission of the particles incident at the wall. The properties of the resulting operator are investigated. The dependence of the first positive eigenvalue on physical parameters is studies in detail. The results obtained are enough to discuss the existence of a critical strictly positive solution of the physical problems which motivated this research.  相似文献   

11.
In this study, modelling, frequency analysis, and optimization of control processes are considered for the fluid flow in pipeline systems. A mathematical model of controlled pipeline elements with distributed parameters is proposed to describe the dynamical behaviour of compressible fluid which is transported in a long rigid tube. By exploiting specific functions representing cross-sectional forces and effective displacements as well as linear approximations of fluidic resistances, the original problem with non-uniform parameters is reduced to a partial differential equation (PDE) system with constant coefficients and homogeneous initial and boundary conditions. Three numerical approaches are applied to an efficient analysis of natural vibrations and reliable control-oriented modelling of pipeline elements. The conventional Galerkin method is compared with the method of integrodifferential relations based on a weak formulation of the constitutive laws. In the latter approach, the original initial-boundary value problem is reduced to the minimization of an error functional which provides explicit energy estimates of the solution quality. A novel projection approach is implemented on the basis of the Petrov–Galerkin method combined with the method of integrodifferential relations. This technique benefits from the advantages of the above-mentioned projection and variational approaches, namely sufficient numerical stability, a lower differential order, and an explicit quality estimation. Numerical optimization procedures, making use of a modified finite element technique, are proposed to obtain a feedforward control strategy for changing the pressure and mass flow inside the pipeline system to a desired operating state. At this given finite point of time, residual elastic oscillations inside the pipeline are minimized. Numerical results, obtained for ideal as well as viscous fluid models, are analysed and discussed.  相似文献   

12.
We study a Volterra convolution integral equation of the first kind on a semi-infinite interval. Under some rather natural constraints on the kernel and the right-hand side of the Volterra integral equation (the kernel has bounded support, while the support of the right-hand side may be unbounded), it is possible to reconstruct the integral operator of the equation (i.e., the solution and the kernel of the integral operator) from the right-hand side of the equation. The uniqueness theorem is proved, the necessary and sufficient conditions for solvability are found, and the explicit formulas for the solution and the kernel are obtained.  相似文献   

13.
Under study are the systems of quasilinear time-delay differential equations with parameters and periodic coefficients. Some sufficient conditions are derived for asymptotic stability of the zero solution, and the estimates of solutions are obtained that characterize the decay rate at the infinity.  相似文献   

14.
Parallel Galerkin domain decomposition procedures for wave equation are given. These procedures use implicit method in the sub-domains and simple explicit flux calculation on the inter-boundaries of sub-domains by integral mean method or extrapolation method. Thus, the parallelism can be achieved by these procedures. The explicit nature of the flux prediction induces a time step constraint that is necessary to preserve the stability. L2-norm error estimates are derived for these procedures. Experimental results are presented to confirm the theoretical results.  相似文献   

15.
In this work, the static stability of a thin plate in axial subsonic airflow is studied using the framework of Possio integral equation. Specifically, we consider the cases when the plate’s leading edge is free and the plate’s trailing edge is either pinned or clamped. We formulate the problem under consideration using a partial differential equations (PDE) model and then linearize the model about the free stream velocity, density, and pressure, to enable analytical treatment. Based on the linearized model, we introduce a new derivation of a Possio integral equation that relates the pressure jump along the thin plate to the plate’s downwash. The steady state solution to the Possio equation is then used to account for the aerodynamic loads in the plate steady state governing equation resulting in a singular differential-integral equation which is transformed to a singular integral equation that represents the static aeroelastic equation of the plate. We verify the solvability of the static aeroelastic equation based on the Fredholm alternative for compact operators in Banach spaces and the contraction mapping theorem. By constructing solutions to the static aeroelastic equation and matching the nonzero boundary conditions at the trailing edge with the zero boundary conditions at the leading edge, we obtain characteristic equations for the free-clamped and free-pinned plates. The minimum solutions to the characteristic equations are the divergence speeds which indicate when static instabilities start to occur. We show analytically that free-pinned plates are statically unstable. We also construct, analytically, flow speed intervals that correspond to static stability regions for free-clamped plates. Furthermore, we resort to numerical computations to obtain an explicit formula for the divergence speed of free-clamped plates. Finally, we apply the obtained results on piezoelectric plates and we show that free-clamped piezoelectric plates are statically more stable than conventional free-clamped plates due to the piezoelectric coupling.  相似文献   

16.
Under consideration is some problem for inhomogeneous differential evolution equation in Banach space with an operator that generates a C 0-continuous semigroup and a nonlocal integral condition in the sense of Stieltjes. In case the operator has continuous inhomogeneity in the graph norm. We give the necessary and sufficient conditions for existence of a generalized solution for the problem of whether the nonlocal data belong to the generator domain. Estimates on solution stability are given, and some conditions are obtained for existence of the classical solution of the nonlocal problem. All results are extended to a Sobolev-type linear equation, the equation in Banach space with a degenerate operator at the derivative. The time nonlocal problem for the partial differential equation, modeling a filtrating liquid free surface, illustrates the general statements.  相似文献   

17.
A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that under suitable conditions on the parameters the positive equilibrium is asymptotically stable when the hunting delay is less than a certain critical value and unstable when the hunting delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theorem for functional differential equations (FDEs), we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the hunting delay crosses through a sequence of critical values. In particular, by applying the normal form theory and the center manifold reduction for FDEs, an explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.  相似文献   

18.
A Nyström method for the discretization of thermal layer potentials is proposed and analyzed. The method is based on considering the potentials as generalized Abel integral operators in time, where the kernel is a time dependent surface integral operator. The time discretization is the trapezoidal rule with a corrected weight at the endpoint to compensate for singularities of the integrand. The spatial discretization is a standard quadrature rule for surface integrals of smooth functions. We will discuss stability and convergence results of this discretization scheme for second-kind boundary integral equations of the heat equation. The method is explicit, does not require the computation of influence coefficients, and can be combined easily with recently developed fast heat solvers.  相似文献   

19.
General nonlinear difference equations with time‐varying delays are considered. Explicit criteria for contraction of such equations are presented. Then some simple sufficient conditions for global exponential stability of equilibria and for stability of invariant sets are derived. Furthermore, explicit criteria for existence, uniqueness and global exponential stability of periodic solutions are derived. Finally, the obtained results are applied to time‐varying discrete‐time neural networks with delay.  相似文献   

20.
An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号