首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method of locating all real roots of systems of nonlinear equations is presented here. The root finding problem is transformed to optimization problem, enabling the application of global optimization methods. Among many methods that exist in global optimization literature, Multistart and Minfinder are applied here because of their ability to locate not only the global minimum but also all local minima of the objective function. This procedure enables to locate all the possible roots of the system. Various test cases have been examined in order to validate the proposed procedure. This methodology does not make use of a priori knowledge of the number of the existing roots in the same manner as the corresponding global optimization methodology which does not make use of a priori knowledge of the existed number of local minima. Application of the new methodology resulted in finding all the roots in all test cases. The proposed methodology is general enough to be applied in any root finding problem.  相似文献   

2.
Cutting Angle Method and a Local Search   总被引:1,自引:0,他引:1  
The paper deals with combinations of the cutting angle method in global optimization and a local search. We propose to use special transformed objective functions for each intermediate use of the cutting angle method. We report results of numerical experiments which demonstrate that the proposed approach is very beneficial in the search for a global minimum.  相似文献   

3.
In this paper, a new global optimization method is proposed for an optimization problem with twice-differentiable objective and constraint functions of a single variable. The method employs a difference of convex underestimator and a convex cut function, where the former is a continuous piecewise concave quadratic function, and the latter is a convex quadratic function. The main objectives of this research are to determine a quadratic concave underestimator that does not need an iterative local optimizer to determine the lower bounding value of the objective function and to determine a convex cut function that effectively detects infeasible regions for nonconvex constraints. The proposed method is proven to have a finite ε-convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering method, the index branch-and-bound algorithm, which uses the Lipschitz constant.  相似文献   

4.
A fast descent algorithm, resorting to a “stretching” function technique and built on one hybrid method (GRSA) which combines simulated annealing (SA) algorithm and gradient based methods for large scale global optimizations, is proposed. Unlike the previously proposed method in which the original objective functions remain unchanged during the whole course of optimization, the new method firstly constructs an auxiliary function on one local minimizer obtained by gradient based methods and then SA is executed on this constructed auxiliary function instead of on the original objective function in order that we can improve the jumping ability of SA algorithm to escape from the currently discovered local minimum to a better one from which the gradient based methods restart a new local search. The above procedure is repeated until a global minimum is detected. In addition, corresponding to the adopted “stretching” technique, a new next trial point generating scheme is designed. It is verified by simulation especially on large scale problems that the convergence speed is greatly accelerated, which is its main difference from many other reported methods that mostly cope with functions with less than 50 variables and does not apply to large scale optimization problems. Furthermore, the new algorithm functions as a global optimization procedure with a high success probability and high solution precision.  相似文献   

5.
This paper presents an algorithm for global optimization problem whose objective functions is Lipschitz continuous but not necessarily differentiable. The proposed algorithm consists of local and global search procedures which are based on and inspired by quasisecant method, respectively. The aim of the global search procedure is to identify “promising” basins in the search space. Once a promising basin is identified, the search procedure skips from an exhausted area to the obtained basin, and the local search procedure is then applied at this basin. It proves that the proposed algorithm converges to the global minimum solution if the local ones are finite and isolated. The proposed method is tested by academic benchmarks, numerical performance and comparison show that it is efficient and robust. Finally, The method is applied to solve the sensor localization problem.  相似文献   

6.
A new method is proposed for solving box constrained global optimization problems. The basic idea of the method is described as follows: Constructing a so-called cut-peak function and a choice function for each present minimizer, the original problem of finding a global solution is converted into an auxiliary minimization problem of finding local minimizers of the choice function, whose objective function values are smaller than the previous ones. For a local minimum solution of auxiliary problems this procedure is repeated until no new minimizer with a smaller objective function value could be found for the last minimizer. Construction of auxiliary problems and choice of parameters are relatively simple, so the algorithm is relatively easy to implement, and the results of the numerical tests are satisfactory compared to other methods.  相似文献   

7.
In this paper a new heuristic hybrid technique for bound-constrained global optimization is proposed. We developed iterative algorithm called GLPτS that uses genetic algorithms, LPτ low-discrepancy sequences of points and heuristic rules to find regions of attraction when searching a global minimum of an objective function. Subsequently Nelder–Mead Simplex local search technique is used to refine the solution. The combination of the three techniques (Genetic algorithms, LPτO Low-discrepancy search and Simplex search) provides a powerful hybrid heuristic optimization method which is tested on a number of benchmark multimodal functions with 10–150 dimensions, and the method properties – applicability, convergence, consistency and stability are discussed in detail.  相似文献   

8.
A new random-search global optimization is described in which the variance of the step-size distribution is periodically optimized. By searching over a variance range of 8 to 10 decades, the algorithm finds the step-size distribution that yields the best local improvement in the criterion function. The variance search is then followed by a specified number of iterations of local random search where the step-size variance remains fixed. Periodic wide-range searches are introduced to ensure that the process does not stop at a local minimum. The sensitivity of the complete algorithm to various search parameters is investigated experimentally for a specific test problem. The ability of the method to locate global minima is illustrated by an example. The method also displays considerable problem independence, as demonstrated by two large and realistic example problems: (1) the identification of 25 parameters in a nonlinear model of a five-degrees-of-freedom mechanical dynamic system and (2) solution of a 24-parameter inverse problem required to identify a pulse train whose frequency spectrum matched a desired reference spectrum.  相似文献   

9.
Global optimization is a field of mathematical programming dealing with finding global (absolute) minima of multi-dimensional multiextremal functions. Problems of this kind where the objective function is non-differentiable, satisfies the Lipschitz condition with an unknown Lipschitz constant, and is given as a “black-box” are very often encountered in engineering optimization applications. Due to the presence of multiple local minima and the absence of differentiability, traditional optimization techniques using gradients and working with problems having only one minimum cannot be applied in this case. These real-life applied problems are attacked here by employing one of the mostly abstract mathematical objects—space-filling curves. A practical derivative-free deterministic method reducing the dimensionality of the problem by using space-filling curves and working simultaneously with all possible estimates of Lipschitz and Hölder constants is proposed. A smart adaptive balancing of local and global information collected during the search is performed at each iteration. Conditions ensuring convergence of the new method to the global minima are established. Results of numerical experiments on 1000 randomly generated test functions show a clear superiority of the new method w.r.t. the popular method DIRECT and other competitors.  相似文献   

10.
A new auxiliary function method based on the idea which executes a two-stage deterministic search for global optimization is proposed. Specifically, a local minimum of the original function is first obtained, and then a stretching function technique is used to modify the objective function with respect to the obtained local minimum. The transformed function stretches the function values higher than the obtained minimum upward while it keeps the ones with lower values unchanged. Next, an auxiliary function is constructed on the stretched function, which always descends in the region where the function values are higher than the obtained minimum, and it has a stationary point in the lower area. We optimize the auxiliary function and use the found stationary point as the starting point to turn to the first step to restart the search. Repeat the procedure until termination. A theoretical analysis is also made. The main feature of the new method is that it relaxes significantly the requirements for the parameters. Numerical experiments on benchmark functions with different dimensions (up to 50) demonstrate that the new algorithm has a more rapid convergence and a higher success rate, and can find the solutions with higher quality, compared with some other existing similar algorithms, which is consistent with the analysis in theory.  相似文献   

11.
In this paper, a new nonmonotone inexact line search rule is proposed and applied to the trust region method for unconstrained optimization problems. In our line search rule, the current nonmonotone term is a convex combination of the previous nonmonotone term and the current objective function value, instead of the current objective function value . We can obtain a larger stepsize in each line search procedure and possess nonmonotonicity when incorporating the nonmonotone term into the trust region method. Unlike the traditional trust region method, the algorithm avoids resolving the subproblem if a trial step is not accepted. Under suitable conditions, global convergence is established. Numerical results show that the new method is effective for solving unconstrained optimization problems.  相似文献   

12.
A Hybrid Descent Method for Global Optimization   总被引:6,自引:2,他引:4  
In this paper, a hybrid descent method, consisting of a simulated annealing algorithm and a gradient-based method, is proposed. The simulated annealing algorithm is used to locate descent points for previously converged local minima. The combined method has the descent property and the convergence is monotonic. To demonstrate the effectiveness of the proposed hybrid descent method, several multi-dimensional non-convex optimization problems are solved. Numerical examples show that global minimum can be sought via this hybrid descent method.  相似文献   

13.
This paper gives a new definition of a filled function, which eliminates certain drawbacks of the traditional definitions. Moreover, this paper proposes a quasi-filled function to improve the efficiency of numerical computation and overcomes some drawbacks of filled functions. Then, a new filled function method and a quasi-filled function method are presented for solving a class of global optimization problems. The global optimization approaches proposed in this paper will find a global minimum of original problem by implementing a local search scheme to the proposed filled function or quasi-filled function. Illustrative examples are provided to demonstrate the efficiency and reliability of the proposed scheme. This research was partially supported by Chongqing Municipal Education Commission under Grant 030809, and the Research Committee of The Hong Kong Polytechnic University. An erratum to this article is available at .  相似文献   

14.
This paper proposes an Accelerated Differential Evolution (ADE) algorithm for damage localization and quantification in plate-like structures. In this study, the inverse damage detection problem is formulated as a nonlinear optimization problem. The objective function is established through the alterations of the structure flexibility matrix weighted with a penalty-function, used specifically to prevent the detection of false alarms. The ADE algorithm is designed via the introduction of three modifications in the standard differential evolution algorithm. Firstly, the initial population is created using knowledge we usually have about the damage scenario of a structure. Such initialization technique assists the algorithm to converge promptly. Secondly, in the mutation phase, a new difference vector, created based on the dispersion of individuals through the search space, is used to ensure the automatic balance between global and local searching abilities. Thirdly, a new exchange operator is designed and used to avoid the untimely convergence to local optima. Finite-element models of isotropic and laminated composite plates are considered as numerical examples to test the efficiency of the proposed approach. Numerical results validate the performance of the ADE method, in terms of both solution accuracy and computational cost and highlight its ability to locate and assess damage, even for large-scale problems and noise-contaminated data.  相似文献   

15.
We present a multistart method for solving global satisfycing problems. The method uses data generated by linearly converging local algorithms to estimate the cost value at the local minimum to which the local search is converging. When the estimate indicates that the local search is converging to a value higher than the satisfycing value, the local search is interrupted and a new local search is initiated from a randomly generated point. When the satisfycing problem is difficult and the estimation scheme is fairly accurate, the new method is superior over a straightforward adaptation of classical multistart methods.  相似文献   

16.
Traditionally, minimum cost transshipment problems have been simplified as linear cost problems, which are not practical in real applications. Some advanced local search algorithms have been developed to solve concave cost bipartite network problems. These have been found to be more effective than the traditional linear approximation methods and local search methods. Recently, a genetic algorithm and an ant colony system algorithm were employed to develop two global search algorithms for solving concave cost transshipment problems. These two global search algorithms were found to be more effective than the advanced local search algorithms for solving concave cost transshipment problems. Although the particle swarm optimization algorithm has been used to obtain good results in many applications, to the best of our knowledge, it has not yet been applied in minimum concave cost network flow problems. Thus, in this study, we employ an arc-based particle swarm optimization algorithm, coupled with some genetic algorithm and threshold accepting method techniques, as well as concave cost network heuristics, to develop a hybrid global search algorithm for efficiently solving minimum cost network flow problems with concave arc costs. The proposed algorithm is evaluated by solving several randomly generated network flow problems. The results indicate that the proposed algorithm is more effective than several other recently designed methods, such as local search algorithms, genetic algorithms and ant colony system algorithms, for solving minimum cost network flow problems with concave arc costs.  相似文献   

17.
In this paper we propose an algorithm using only the values of the objective function and constraints for solving one-dimensional global optimization problems where both the objective function and constraints are Lipschitzean and nonlinear. The constrained problem is reduced to an unconstrained one by the index scheme. To solve the reduced problem a new method with local tuning on the behavior of the objective function and constraints over different sectors of the search region is proposed. Sufficient conditions of global convergence are established. We also present results of some numerical experiments.  相似文献   

18.
Descent methods for combinatorial optimization proceed by performing a sequence of local changes on an initial solution which improve each time the value of an objective function until a local optimum is found. Several metaheuristics have been proposed which extend in various ways this scheme and avoid being trapped in local optima. For example, Hansen and Mladenovic have recently proposed the variable neighborhood search method which has not yet been applied to many combinatorial optimization problems. The aim of this paper is to propose an adaptation of this new method to the graph coloring problem.  相似文献   

19.
Global Minimization Algorithms for Holder Functions   总被引:1,自引:0,他引:1  
This paper deals with the one-dimensional global optimization problem where the objective function satisfies a Hölder condition over a closed interval. A direct extension of the popular Piyavskii method proposed for Lipschitz functions to Hölder optimization requires an a priori estimate of the Hölder constant and solution to an equation of degree N at each iteration. In this paper a new scheme is introduced. Three algorithms are proposed for solving one-dimensional Hölder global optimization problems. All of them work without solving equations of degree N. The case (very often arising in applications) when a Hölder constant is not given a priori is considered. It is shown that local information about the objective function used inside the global procedure can accelerate the search signicantly. Numerical experiments show quite promising performance of the new algorithms.  相似文献   

20.
We propose in this paper novel global descent methods for unconstrained global optimization problems to attain the global optimality by carrying out a series of local minimization. More specifically, the solution framework consists of a two-phase cycle of local minimization: the first phase implements local search of the original objective function, while the second phase assures a global descent of the original objective function in the steepest descent direction of a (quasi) global descent function. The key element of global descent methods is the construction of the (quasi) global descent functions which possess prominent features in guaranteeing a global descent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号