首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic copolymerizations of anethole were carried out under various conditions in order to confirm the relative reactivities of its geometric isomers. trans-Anethole was more reactive than cis-anethole in copolymerizations with p-methoxystyrene or styrene, but less reactive in the mutual copolymerization of cis- and trans-anethole; i.e., the trans isomer was more reactive to a growing chain end with little steric hindrance. Thus the intrinsic reactivity of an olefinic double bond to carbonium ion is greater for the trans isomer than for the cis isomer. This idea is supported by 13C NMR spectra, since the signal of the olefinic β-carbon of the trans isomer is at higher field than that of the cis isomer. The behavior of anethole was compared with the results observed in vinyl ethers, where the cis isomer was always more reactive irrrspective of the structure of the growing chain end. In addition, the dependence of monomer reactivity ratios on polymerization conditions is discussed.  相似文献   

2.
The cis- and trans-2-butene episulfides polymerize with cationic catalyts differently than reported for the corresponding oxides. Where the cis-oxide gave amorphous disyndiotactic polymer, the cis-sulfide gives crystalline racemic diisotactic polymer since this polymer could be asymmetrically synthesized in optically active form. Also the same crystalline polymer was obtained with coordination catalysts. Where the trans-oxide gave only crystalline, meso-diisotactic polymer, the trans-sulfide gives mainly amorphous polymer which, in one case, did slowly crystallize. The difference between the trans forms appears due to the longer C? S bond which lowers steric hindrance and thus isomer selection in the attack of episulfide on the growing sulfonium ion to give less steroregular polymer. The difference in the cis forms may result from the sulfur atom in the last chain unit coordinating with the counterion. The greater hindrance around oxygen in the comparable oxide polymers may prevent the same mechanism from being utilized. The cationic polymerization of isobutylene sulfide gives both crystalline and amorphous polymer. NMR evidence indicates that the amorphous polymer results from substantial head-to-head, tail-to-tail polymerization, along with the expected head-to-tail polymerization. The same phenomenon occurs, but to a lesser extent, in cationic isobutylene oxide polymerizations. The preparation and properties of high molecular weight, head-to-tail isobutylene oxide and sulfide polymers from R2Mg-NH3 coordination catalysis are described.  相似文献   

3.
The photoinduced isomerization of cis‐keto and trans‐keto isomers in N‐salicilydenemethylfurylamine has been studied using the surface‐hopping approach at the CASSCF level of theory. After the cis‐keto or trans‐keto isomer is excited to S1 state, the molecule initially moves to a excited‐state local minimum. The torsional motion around relative bonds in the chain drives the molecule to approach a keto‐form conical intersection and then nonadiabatic transition occurs. According to our full‐dimensional dynamics simulations, the trans‐keto and enol photoproducts are responsible for the photochromic effect of cis‐keto isomer excited to S1 state, while no enol isomer was obtained in the photoisomerization of trans keto on excitation. The cis keto to enol and cis keto to trans keto isomerizations are reversible photochemical reactions. It is confirmed that this aromatic Schiff base is a potential molecular switch. Furthermore, the torsion of C N bond occurs in the radiationless decay of trans‐keto isomer, while it is completely suppressed by an intramolecular hydrogen bonding interaction in the dynamics of cis‐keto form. Moreover, the excited‐state lifetime of cis keto is longer than that of trans‐keto form due to the O···H N hydrogen bond.  相似文献   

4.
The microstructure of diene units was investigated in radical homopolymers of the cis and trans isomers of 1,3-pentadiene and copolymers with acrylonitrile, synthetized in bulk and emulsion. Experiments were carried out by infrared spectroscopy, 100 MHz 1H-NMR, and 25 MHz 13C-NMR studies. No difference between the bulk and emulsion samples was noted. The microstructure of poly(1,3-pentadiene) is practically independent of the cis or trans configuration of the diene monomer and is as follows: 56–59% trans-1,4, 15–17% cis-1,4, 16–20% trans-1,2 7–10% cis-1,2 and 0% 3,4. On the other hand, up to about 30% of incorporated acrylonitrile (10% in the feed), the microstructure of the pentadiene fraction in the copolymers is not affected. This finding suggests that the penultimate unit has very little influence on the polymerization process involving the terminal pentadienly unit. Beyond 10% of acrylonitrile in the feed, the proportions of the structural units were linearly dependent upon the acrylonitrile content: trans-1,4 content increased whereas the amounts of cis-1,4 trans-1,2 and cis-1,2 decreased (except the cis-1,2 fraction, constant in the copolymers from the cis-diene). These results are discussed on the assumption that the microstructure of pentadiene residues is strongly associated with the acrylonitrile comonomer in the feed.  相似文献   

5.
Several pairs of cis- and trans-3-substituted acrylic acids (3SAA) were copolymerized with acrylamide in order to determine the major factors affecting the relative reactivities of geometrical isomers of 1,2-disubstituted ethylenes (1,2-DE). The results were that the relative reactivity of cis isomer is larger than that of trans isomer when one substituent is electron-withdrawing and the other is electron-donating. The trans isomer is more reactive than the cis isomer when both substituents are electron-withdrawing. A new method of reactivity comparison of cis- and trans-1,2-DE is proposed in regard to the inductive substituent constant.  相似文献   

6.
Reconsideration of data from an earlier nuclear magnetic resonance study of 1,2-dichloropropane indicates that previously reported energy differences of the two G isomers compared to the T isomer (C-Cl bonds trans) should be reassigned for both the liquid and vapour states, i.e., so that the apparently more sterically hindered isomer with the primary chlorine atom trans to hydrogen is of lower energy than the isomer in which the chlorine atom is trans to the methyl group. Using this new assignment and the experimental average coupling constants, the trans and gauche vicinal coupling constants between the methylene and methyne protons are calculated to be 10.9 and 4.4 Hz respectively. It is further proposed that the P'H (primary chlorine trans to hydrogen) carbon-chlorine stretching vibration occurs at ca. 720 cm?1, about 60 cm? higher than hitherto expected.  相似文献   

7.
Several types of active sites can be formed during the polymerization of dienes in the presence of lanthanide catalytic systems. These sites differ in the nearest environment of a lanthanide atom (the numbers of chlorine and carbon atoms) and in the number of lanthanide–carbon bonds involved in chain growth. Quantum-chemical calculation shows that the -allyl binding of the terminal unit of a growing polymeric chain with the lanthanide atom of an active site may be the reason for the cis-stereospecificity of the site. Therefore, the active sites containing electron-acceptor chlorine atoms that favor -allyl binding can form cis-polydienes. Depending on the conditions of catalytic system preparation, primarily on the nature of an organic compound of a nontransition metal, one or another set of active sites is formed that can affect its stereospecificity. The quantitative analysis of kinetic data for diene polymerization shows that the anti-synisomerization of terminal units of growing polymeric chains made a certain contribution to the formation of trans-1,4 units in the presence of cis-regulating active sites.  相似文献   

8.
Perfluorocyclopropene undergoes free-radical copolymerization with ethylene, isobutylene, cis- and trans-2-butene, vinyl acetate, methyl vinyl ether, vinyl chloride, styrene, acrylonitrile, tetrafluoroethylene, vinyl fluoride, and vinylidene fluoride. The copolymerization proceeds most readily with electron-rich olefins such as methyl vinyl ether (to yield a 1:1 copolymer), but conditions were found to give copolymers with electron-deficient olefins such as tetrafluoroethylene and vinylidene fluoride. Copolymers with methyl vinyl ether, tetrafluoroethylene, vinyl fluoride, and vinylidene fluoride were examined in detail. Evidence is presented that the perfluorocycloproply ring is incorporated intact into the copolymer and can be subsequently isomerized to a perfluoropropenyl unit by heating at 200–300°C.  相似文献   

9.
The photolysis of SO2 at 3712 Å in the presence of the 1,2-dichloroethylenes has been investigated at 22deg;C. The data are consistent with the SO2(3B1) photosensitized isomerization of the 1,2-dichloroethylene isomer. A kinetic treatment of the initial quantum yield data was consistent with the formation of a polarized charge-transfer intermediate whenever SO2(3B1) molecules and one of the 1,2-dichloroethylene isomers collide which ultimately decays unimolecularly to the cis-isomer with a probability of 0.70 ± 0.26 and to the trans-isomer with a 0.37 ± 0.16 probability. Quenching rate constants for removal of SO2(3B1) molecules by cis- and trans-1,2-dichloroethylene have been estimated from quantum yield data and from laser excited phosphorescence lifetimes using an excitation wavelength of 3130 Å. Estimates of the quenching rate constant (units of 1./mole ± sec) are for the cis-isomer, (1.63 ± 0.71) × 1010, quantum yield data, and (2.44 ± 0.11) × 1010, lifetime data; and for the trans-isomer,(2.59 ± 0.09)×1010, lifetime data, and (2.35 ±0.89) × 1010, quantum yield data. An experimentally determined photostationary composition,[cis-C2Cl2H2]/[trans-C2Cl2H2] = 1.8 - 0.1, was in good agreement with a value of 2.00 - 1.15 which was predicted from rate constants derived in this study.  相似文献   

10.
In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography–mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-μm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons. Figure SPDE Principle  相似文献   

11.
A number of unsymmetrically substituted N-methylaminoboranes, each with a phenyl ring at nitrogen and boron, were synthesized. The ratio of the cis-trans isomers has been investigated by means of 1H NMR spectroscopy and its dependence on the size of the aromatic moieties and the second substituent on boron is discussed. The structures of the compounds were established from the position of the N-methyl signal and were based on X-ray structure determinations of (4-bromophenylmethylamino) chlorophenylborane and (4-bromo-2-methylphenylmethylamino)chloro(2-methylphenyl)borane. In the case of (methylphenylamino)chlorophenylborane, the isomer with the phenyl group in cis position is highly favoured (90%) in the thermal equilibrium. Substitution of one of the phenyl groups by a 2-methyl- or 2,6-dimethylphenyl group decreases the fraction of the cis isomer. The same occurs when the chlorine substituent at boron is replaced by bromine or the methyl group. In absolute terms, the trans isomers are energetically more stable than the cis isomers only if one of the substituents at boron is a methyl or a 2,6-dimethylphenyl group or if there is a 2-methylphenyl substituent both at the nitrogen and the boron atom. Steric hindrance and electronic repulsion are probably responsible for the observed substitution effects. In addition, these experiments show that the isomer favoured in the crystal also predominates in solution.  相似文献   

12.
cis- and trans-1-Ethoxy-1,3-butadienes were polymerized by a variety of cationic agents in various solvents at ?78°C. The trans ether, which is the more stable isomer, was found to have greater polymerizability than the cis ether. The trans monomer gave polymers predominantly of the trans-1,4 type, whereas the cis monomer showed a tendency toward the formation of polymers having the microstructure of the 1,2 type. It was concluded that, in the cis ether, the carbon atom which is the most vulnerable to the attack of carbonium ions is the one at the 2-position, whereas, in the case of the trans isomer, the terminal 4-carbon is the most reactive center. The conclusion was confirmed from the results of acetal addition reaction catalyzed by boron trifluoride etherate. The marked contrast in the mode of reaction of the two isomeric ethers toward carbonium ions was interpreted in terms of the difference in the degree of bonding in the transition state.  相似文献   

13.
The microstructural changes that occur in cis and trans forms of 1,2-poly(1,4-hexadiene) during methylene blue-photosensitized oxidation were examined by infrared (IR) and 13C-NMR spec-troscopy. The singlet oxygenation of these polymers yielded the expected allylic hydroperoxides accompanied by double bond shifts to new vinyl and trans-vinylene double bonds. The photosensitized oxidation exhibited zero-order kinetics; the relative rates for the cis- and trans-1,2-poly(1,4-hexadiene)s were approximately 3.8:1.0.  相似文献   

14.
1-Methylcyclopropene (MCP) copolymerizes rapidly with acrylic and vinyl monomers to form soluble, high molecular weight products containing enchained cyclopropane rings. The high electron availability in the cyclopropene double bond promotes one-to-one alternating copolymerization with sulfur dioxide, maleic anhydride, acrylic acid, acrylonitrile, dialkyl fumarates and acrylic esters. Nonalternating copolymers are obtained with vinyl chloride and vinyl acetate, and attempted copolymerization fails entirely with styrene, α-methylstyrene and isoprene. This pattern of copolymerization reactivity resembles that of highly compressed ethylene. Methylcyclopropene copolymers have high glass temperatures in spite of the small size of the MCP unit. The combination of high Tg and small size allows preparation of copolymers with high Tg having a wide range of ductilities and cohesive energy densities.  相似文献   

15.
In order to get information on the radiolytic changes in 1,2-polybutadiene (1,2-PB) the sol and gel fractions, the conversion of double bonds, the structure and concentration of radicals, the formation of dienes and the formation of gaseous products were measured. In addition, the dose rate dependence and temperature dependence for the conversion of double bonds were determined. G values for double bond conversion depend on molecular weight and range from 20 to 200. G values for crosslinking are about 10. A mechanism for the double bond conversion is proposed which involves initiation by a transformation of the primary radical ion in the vinyl group into a carbonium ion and a radical. This is supported by ESR measurement. Reaction of the carbonium ion with a vinyl group in the same chain gives rise to cyclization, whereas reaction with a vinyl group in a neighboring chain results in crosslinking. A comparison of the G values for conversion of double bonds with the G values for crosslinking shows that the formation of cyclic rings exceeds the formation of crosslinks by a factor of about 10. The corresponding values in 1,4-cis- and 1,4-trans-polybutadiene are much smaller [G(cl) ? 2; G(db) ? 7]. The pendent vinyl groups in 1,2-polybutadiene therefore are more reactive than the vinylidene groups in 1,4-polybutadienes.  相似文献   

16.
Extinction coefficients of the characteristic infrared bands due to isomeric structural units were measured for polybutadiene and polyisoprene in CS2 or CCl4 solutions and were compared with the isomer composition determined by NMR. The NMR signal assignments were made on the basis of the spectra of deutero derivatives of the polymers. In the case of polyisoprene, linear relations were obtained between the extinction coefficients and the isomer contents determined by NMR for the absorption bands at 1385 cm?1 (characteristic of trans-1,4 units), 1376 cm?1 (cis-1,4 units), and 889 cm?1 (3,4 units). However, for the absorption bands at 840 cm?1 (characteristic of cis-1,4 and trans-1,4 units), isomerized polyisoprenes did not give such a linear relationship. In polybutadiene, the extinction coefficient for the atactic 1,2 units was found to be lower than that of the syndiotactic 1,2 unit. These experimental facts lead to the conclusion that additivity of the extinction coefficients does not always hold for diene polymers. The deviation from the linear relation may be associated with regular sequences of one isomeric conformation in the chain.  相似文献   

17.
13C-NMR has been used to analyze the microstructures of a series of experimental chlorinated ethylene–vinyl acetate copolymers (15–56% CI). Previously established line assignments for EVA copolymers and substituent effect parameters for chlorine have enabled us to tentatively assign partial structures up to five carbon atoms in length. The 13C-NMR analyses of a commercial vinyl chloride–vinyl acetate copolymer, a commercial vinyl chloride–vinyl acetate–ethylene terpolymer, and a commercial chlorinated polyethylene support the structural assignments. Data obtained for the experimental resins indicate that the acetate groups influence the way in which chlorine is added to the polymer chain. furthermore, the data indicate the acetate groups undergo little, if any, chlorination.  相似文献   

18.
The kinetics and products of the homogeneous gas-phase reactions of the OH radical with the chloroethenes were investigated at 298 ± 2 K and atmospheric pressure. Using a relative rate technique and ethane as a scavenger for the chlorine atoms produced in these OH radical reactions, rate constants (in units of 10?12 cm3 molecule?1s?1) of 8.11 ± 0.24, 2.38 ± 0.14, and 1.80 ± 0.03 were obtained for 1,1-dichloroethene, cis-1, 2-dichloroethene and trans-1,2-dichloroethene, respectively. Under these conditions, the major products observed by long pathlength FT-IR absorption spectroscopy were HCHO and HC(O)Cl from vinyl chloride; HC(O)Cl from cis- and trans-1,2-dichloroethene; HCHO and COCl2 from 1,1-dichloroethene; HC(O)Cl and COCl2 from trichloroethene; and COCl2 from tetrachloroethene. In the absence of a Cl atom scavenger, significant yields of the chloroacetyl chlorides, CHxCl3?xC(O)Cl, were observed from 1,1-dichloro-, trichloro- and tetrachloroethene, indicating that these products resulted from reactions involving chlorine atoms. The yields of all of these products are reported and the mechanisms of these gas-phase reactions discussed. In addition, OH radical reaction rate constants were redetermined, in the presence of a Cl atom scavenger, for cis- and trans-1,3-dichloropropene and 3-chloro-2-chloromethyl-1-propene, being (in units of 10?12 cm3 molecule?1 s?1) 8.45 ± 0.41, 14.4 ± 0.8, and 33.5 ± 3.0, respectively.  相似文献   

19.
Addition chlorination of cis-1,4-polybutadiene in the presence of acetic acid as a cosolvent resulted in the formation of head-to-head vinyl chloride–vinyl acetate copolymer. Chlorine analysis, IR, and NMR spectra of the chlorinated polybutadiene indicated that reaction was primarily double bond addition; there was little evidence for substitutive chlorination. Acetate was incorporated by nucleophilic participation of the acetic acid cosolvent. The extent of incorporation of the acetate group in the polymer chain was a function of the acetic acid concentration. Both the glass transition temperatures and the densities of the chloroacetylated polymers decreased as the degree of acetylation increased.  相似文献   

20.
A new reaction scheme for obtaining cis and trans 1,2-diphenylcyclobutane is described. Using 1H-NMR at 600 MHz, full spectral assignment was made for both isomers, obtaining all J coupling constants and chemical shifts. NMR results on cis and trans 1,2-diphenylcyclobutane are compared with the vicinal coupling constants obtained by the Barfield–Smith equations from the literature internal and dihedral angles of cyclobutane. In the trans isomer, in agreement with previous results on halo-cyclobutanes, the conformation with the phenyls in the pseudo-di-equatorial position is strongly preferred. On the contrary, the cis isomer fluctuates between the two equivalent conformations: phenyl pseudo-axial and pseudo-equatorial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号