首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The title compound, (C7H10N)[Ni(C3S5)2] or (Etpy)[Ni(dmit)2] (where Etpy is the N‐ethyl­pyridinium cation, C7H10N+, and dmit is the 2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ate dianion, C3S52−), crystallizes in the P space group with two mol­ecules in the asymmetric unit. The [Ni(dmit)2] monoanion has a planar D2h conformation, with the central Ni atom and the four coordinated S atoms forming an NiS4 square plane. The six‐membered ring of the Etpy cation also shows good planarity, as expected. There are two main types of disorder in the two Etpy cations. Several short intermolecular interactions are present, such as S⋯S, Ni⋯S and Ni⋯Ni, which help to form the enhanced three‐dimensional structure of the crystal.  相似文献   

2.
The title compounds are salts of the general form (Q+)2[Zn(dmit)2]2?, where dmit corresponds to the ligand (C3S5)? present in both and Q+ to the counter‐cations (nBu4N)+ [or C16H36N+] and (Ph4As)+ [or C24H20As+], respectively. In the first case, Zn is in the 4e special positions of space group C2/c and hence the [Zn(dmit)2]2? dianion possesses twofold axial crystallographic symmetry. Including these, there are now 11 known examples of [Zn(dmit)2]2? or its analogues, with O replacing the exocyclic thione S, and [Zn(dmio)2]2? dianions in nine structures with various Q. Comparison of these reveals a remarkable variation in details of the conformation which the dianion may adopt in terms of Zn coordination, equivalence of the Zn—S bond lengths, displacement of Zn from the plane of the ligand and overall dianion shape.  相似文献   

3.
The title compound, [Fe(C10H15)2][Ni(C3OS4)2]·C4H8O or [Fe(Cp*)2][Ni(dmio)2]·THF, where [Fe(Cp*)2]+ is the deca­methyl­ferrocenium cation, dmio is the 2‐oxo‐1,3‐dithiole‐4,5‐dithiol­ate dianion and THF is tetra­hydro­furan, crystallizes with two independent half‐anion units [one Ni atom is at the centre of symmetry (, , 0) and the other is at the centre of symmetry (, 0, )], one cation unit (located in a general position) and one THF solvent mol­ecule in the asymmetric unit. The crystal structure consists of two‐dimensional layers composed of parallel mixed chains, where pairs of cations alternate with single anions. These layers are separated by sheets of anions and THF mol­ecules.  相似文献   

4.
In the title compound, [PtI(C15H11N3)][AuI2], the [PtI(terpy)]+ cations (terpy is 2,2′:6′,2′′‐terpyridine) stack in pairs about inversion centers through Pt...Pt interactions of 3.5279 (5) Å. The [AuI2] anions also exhibit pairwise stacking, with Au...I distances of 3.7713 (5) Å. The [PtI(terpy)]+ cations and [AuI2] anions aggregate forming infinite arrays of stacked ...({[PtI(terpy)]+...[PtI(terpy)]+}...{[AuI2]...[AuI2]})... units.  相似文献   

5.
The crystal structure of the title compound, (C16H36N)[Ni(C3S5)2], is isomorphous with that of the corresponding Pt complex but different from the structures reported for compounds of the same chemical composition, and so provides a new crystalline phase of this complex. The nickel complex anion has good planarity and lies on a crystallographic inversion centre. There is disorder in the two terminal C atoms of two of the butyl chains of the tetra‐n‐butyl­ammonium cation, the N atom of which is located on a twofold axis.  相似文献   

6.
The title compound, [Zn(C2H3O2)(C6H18N4)][B5O6(OH)4], contains mixed‐ligand [Zn(CH3COO)(teta)]+ complex cations (teta is triethylenetetramine) and pentaborate [B5O6(OH)4] anions. The [B5O6(OH)4] anions are connected to one another through hydrogen bonds, forming a three‐dimensional supramolecular network, in which the [Zn(CH3COO)(teta)]+ cations are located.  相似文献   

7.
Reactions of (Et4N)[Tp*WS3] [Tp* is hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate] with CuSCN in MeCN in the presence of melamine afforded the title neutral dimeric cluster [Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2] or [Tp*W(μ2‐S)23‐S)Cu(μ2‐SCN)(CuMeCN)]2, which has two butterfly‐shaped [Tp*WS3Cu2] cores bridged across a centre of inversion by two (CuSCN) anions. The S atoms of the bridging thiocyanate ligands interact with the H atoms of the methyl groups of the Tp* units of a neighbouring dimer to form a C—H...S hydrogen‐bonded chain. The N atoms of the thiocyanate anions interact with the H atoms of the methyl groups of the Tp* units of neighbouring chains, affording a two‐dimensional hydrogen‐bonded network.  相似文献   

8.
The title complex, [Li2(D2O)6][Li(C9H27SSiO3)2]2·2D2O, is the first compound with an S—M bond (M = alkali metal) within an unusual type of lithate anion, [Li(SR)2] {where R is Si[OC(CH3)3]3}. There is a centre of symmetry located in the middle of the Li2O2 ring of the cation. All Li atoms are four‐coordinate, with LiO4 (cations) and LiO2S2 (anions) cores. The singly charged [Li(SR)2] anions are well separated from the doubly charged [Li2(D2O)6]2+ cations; the distance between Li atoms from differently charged ions is greater than 5 Å. Both ion types are held within an extended network of O—D⋯O and O—D⋯S hydrogen bonds.  相似文献   

9.
The title compound, (C6H9N2S)[ZnCl3{SC(NH2)2}], exists as a zincate where the zinc(II) centre is coordinated by three chloride ligands and a thiourea ligand to form the anion. The organic cation adopts the protonated 4,6‐dimethyl‐2‐sulfanylidenepyrimidin‐1‐ium (L) form of 4,6‐dimethylpyrimidine‐2(1H)‐thione. Two short N—H...Cl hydrogen bonds involving the pyrimidine H atoms and the [ZnCl3L] anion form a crystallographically centrosymmetric dimeric unit consisting of two anions and two cations. The packing structure is completed by longer‐range hydrogen bonds donated by the thiourea NH2 groups to chloride ligand hydrogen‐bond acceptors.  相似文献   

10.
In the title compound, [CrBr2(C5H14N2)2]2Br2·HClO4·6H2O, there are two independent CrIII complex cations which are conformational isomers of each other. The Cr atoms lie respectively on a center of symmetry and on a mirror plane and have octahedral environments, coordinated by the N atoms of two 2,2‐di­methylpropane‐1,3‐diamine ligands and by two Br atoms in trans positions. The Cr—N and Cr—Br bond lengths are in the ranges 2.078 (3)–2.089 (3) and 2.4495 (9)–2.5017 (9) Å, respectively. The crystal structure consists of two CrIII complex cations, two Br? anions, a (ClO4)? anion and an [H13O6]+ hydrogen‐bonded cluster cation.  相似文献   

11.
The crystal structure of the title complex, (C8H10N)2(C5H6N)[BiI6], contains discrete [BiI6]3? anions, and (HNC5H5)+ and (CH3COCH2NC5H5)+ cations separated by normal van der Waals contacts. The [BiI6]3? anion has the Bi atom on an inversion centre. The (HNC5H5)+ cation also lies about an inversion centre and is disordered. The (CH3COCH2NC5H5)+ cation lies in a general position.  相似文献   

12.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

13.
The title compounds, (C2H6NO2)2[NbOF5], (I), and (C3H8NO2)2[NbOF5]·2H2O, (II), are built from isolated distorted octahedral [NbOF5]2− complex anions, amino acid cations and water molecules [for (II)]. In the pentafluoridooxidoniobate(V) anions, the Nb and O atoms, and the F atoms in trans positions with respect to the O atoms, are disordered about an inversion centre for both structures. The Nb atoms are shifted from the inversion centres by distances of 0.1455 (1) and 0.1263 (2) Å for (I) and (II), respectively. The Nb=O and Nb—F(trans) bond lengths are 1.7952 (3) and 2.0862 (3) Å, respectively, for (I), and 1.8037 (7) and 2.0556 (7) Å for (II). In the crystal structures, cations and water molecules [for (II)] are linked to the [NbOF5]2− anions via hydrogen bonds. This study demonstrates the possibility of true geometry determination of disordered [NbOF5]2− complex anions in centrosymmetric structures.  相似文献   

14.
The title ionic compound, (C7H8N3)2[Ho2(C4H5O2)8], is constructed from two almost identical independent centrosymmetric anionic dimers balanced by two independent 2‐amino‐1H‐benzimidazol‐3‐ium (Habim+) cations. The asymmetric part of each dimer is made up of one HoIII cation and four crotonate (crot or but‐2‐enoate) anions, two of them acting in a simple η2‐chelating mode and the remaining two acting in two different μ22 fashions, viz. purely bridging and bridging–chelating. Symmetry‐related HoIII cations are linked by two Ho—O—Ho and two Ho—O—C—O—Ho bridges which lead to rather short intracationic Ho...Ho distances [3.8418 (3) and 3.8246 (3) Å]. In addition to the obvious Coulombic interactions linking the cations and anions, the isolated [Ho2(crot)8]2− and Habim+ ions are linked by a number of N—H...O hydrogen bonds, in which all N—H groups of the cation are involved as donors and all (simple chelating) crot O atoms are involved as acceptors. These interactions result in compact two‐dimensional structures parallel to (110), which are linked to each other by weaker π–π contacts between Habim+ benzene groups.  相似文献   

15.
Orange crystals of bis(acetonitrile‐κN)bis[N,N‐bis(diphenylphosphanyl)ethanamine‐κ2P,P′]iron(II) tetrabromidoferrate(II), [Fe(CH3CN)2(C26H25NP2)2][FeBr4], (I), and red crystals of bis(acetonitrile‐κN)bis[N,N‐bis(diphenylphosphanyl)ethanamine‐κ2P,P′]iron(II) μ‐oxido‐bis[tribromidoferrate(III)], [Fe(CH3CN)2(C26H25NP2)2][Fe2Br6O], (II), were obtained from the same solution after prolonged exposure to atmospheric oxygen, resulting in partial oxidation of the [FeBr4]2− anion to the [Br3FeOFeBr3]2− anion. The asymmetric unit of (I) consists of three independent cations, one on a general position and two on inversion centres, with two anions, required to balance the charge, located on general positions. The asymmetric unit of (II) consists of two independent cations and two anions, all on special positions. The geometric parameters within the coordination environments of the cations do not differ significantly, with the major differences being in the orientation of the phenyl rings on the bidentate phosphane ligand. The ethyl substituent in the cation of (II) and the Br atoms in the anions of (II) are disordered. The P—Fe—P bite angles represent the smallest angles reported to date for octahedral FeII complexes containing bidentate phosphine ligands with MeCN in the axial positions, ranging from 70.82 (3) to 70.98 (4)°. The average Fe—Br bond distances of 2.46 (2) and 2.36 (2) Å in the [FeBr4]2− and [Br3FeOFeBr3]2− anions, respectively, illustrate the differences in the Fe oxidation states.  相似文献   

16.
Molecules of di­phenyl(2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ato‐S,S′)­plumbane, [Pb(C3S5)(C6H5)2], are linked into sheets via two intermolecular Pb?Sthione interactions of 3.322 (4) and 3.827 (4) Å; the Pb centre has a distorted octahedral geometry. In contrast, mol­ecules of ­di­phenyl(2‐thio­xo‐1,3‐di­thiole‐4,5‐di­thiol­ato‐S,S′)­stannane, [Sn(C3S5)(C6H5)2], are linked into chains via a single intermolecular Sn—Sthione interaction of 2.8174 (9) Å; the Sn centre has a distorted trigonal‐bipy­ramidal geometry.  相似文献   

17.
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X‐ray diffraction. The structures consist of discrete [CuCl4]2? anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2? anions of both compounds have flattened tetrahedral geometries. There are several N—H?Cl weak bonds that join the [CuCl4]2? anions and the organic cations helping retain the pseudo‐tetrahedral geometries of the anions.  相似文献   

18.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

19.
Bis(5‐chloro‐8‐hydroxyquinolinium) tetrachloridopalladate(II), (C9H7ClNO)2[PdCl4], (I), catena‐poly[dimethylammonium [[dichloridopalladate(II)]‐μ‐chlorido]], {(C2H8N)[PdCl3]}n, (II), ethylenediammonium bis(5‐chloroquinolin‐8‐olate), C2H10N22+·2C9H5ClNO, (III), and 5‐chloro‐8‐hydroxyquinolinium chloride, C9H7ClNO+·Cl, (IV), were synthesized with the aim of preparing biologically active complexes of PdII and NiII with 5‐chloroquinolin‐8‐ol (ClQ). Compounds (I) and (II) contain PdII atoms which are coordinated in a square‐planar manner by four chloride ligands. In the structure of (I), there is an isolated [PdCl4]2− anion, while in the structure of (II) the anion consists of PdII atoms, lying on centres of inversion, bonded to a combination of two terminal and two bridging Cl ligands, lying on twofold rotation axes, forming an infinite [–μ2‐Cl–PdCl2–]n chain. The negative charges of these anions are balanced by two crystallographically independent protonated HClQ+ cations in (I) and by dimethylammonium cations in (II), with the N atoms lying on twofold rotation axes. The structure of (III) consists of ClQ anions, with the hydroxy groups deprotonated, and centrosymmetric ethylenediammonium cations. On the other hand, the structure of (IV) consists of a protonated HClQ+ cation with the positive charge balanced by a chloride anion. All four structures are stabilized by systems of hydrogen bonds which occur between the anions and cations. π–π interactions were observed between the HClQ+ cations in the structures of (I) and (IV).  相似文献   

20.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号