首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The double mercury salt [Hg(C5H8N2)2][HgClI3]·C2H6OS was prepared and its structure characterized. The [Hg(C5H8N2)2]2+ cation lies about an inversion centre and the [HgClI3]2? anion lies on a mirror plane. Cations and anions are linked to form a one‐dimensional polymer by weak Hg?Cl interactions [Hg?Cl 3.3744 (3) Å]. The mercury–carbene bond distance [2.076 (7) Å] is typical of a dicationic mercury–carbene species.  相似文献   

2.
The positive-ion mass spectra of the following organonitrogen derivatives of metal carbonyls are discussed: (i) The compounds NC5H4CH2Fe(CO)2C5H5, NC5H4CH2COMo(CO)2C5H5, NC5H4CH2W(CO)3C5H5, NC5H4CH2COMn(CO)4, C5H10NCH2CH2Fe(CO)2C5H5, (CH3)2NCH2CH2COFeCOC5H5 and (CH3)2NCH2CH2COMn(CO)4 obtained from metal carbonyl anions and haloalkylamines, (ii) The isocyanate derivative C5H5Mo(CO)3CH2NCO; (iii) The arylazomolybdenum derivatives RN2Mo(CO)2C5H5 (R ? phenyl, p-tolyl, or p-anisyl); (iv) The compound (C6H5N)2COFe2(CO)6 obtained from Fe3(CO)12 and phenyl isocyanate; (v) The N,N,N′,N′-tetramethylethylenediamine complex (CH3)2NCH2CH2N(CH3)2W(CO)4. Further examples of eliminations of hydrogen, CO, and C2H2 fragments were noted. In addition evidence for the following more unusual processes was obtained: (i) Elimination of HCN fragments from the ions [NC5H4CH2MC5H5]+ to give the ions [(C5H5)2M]+ (M ? Fe, Mo and W); (ii) Conversion of C5H5Mo(CO)3CH2NCO to C5H5Mo(CO)2CH2NCO within the mass spectrometer; (iii) Elimination of N2 from [RN2MoC5H5]+ to give [RMoC5H5]+; (iv) Novel eliminations of HNCO, FeNCO, and C6H5NC fragments in the mass spectrum of (C6H5N)2COFe2(CO)6; (v) Facile dehydrogenation of the N,N,N′,-N′-tetramethylethylenediamine ligand in the complex (CH3)2NCH2CH2N(CH3)2W(CO)4.  相似文献   

3.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

4.
The enhanced reactivity of [WF5]+ over WF6 has been exploited to access a neutral derivative of elusive WF5. The reaction of WF6(NC5H5)2 with [(CH3)3Si(NC5H5)][O3SCF3] in CH2Cl2 results in quantitative formation of trigonal-dodecahedral [WF5(NC5H5)3]+, which has been characterised as its [O3SCF3] salt by Raman spectroscopy in the solid state and variable-temperature NMR spectroscopy in solution. The salt is susceptible to slow decomposition in solution at ambient temperature via dissociation of a pyridyl ligand, and the resultant [WF5(NC5H5)2]+ is reduced to WF5(NC5H5)2 in the presence of excess C5H5N, as determined by 19F NMR spectroscopy. Pentagonal-bipyramidal WF5(NC5H5)2 was isolated and characterised by X-ray crystallography and Raman spectroscopy in the solid state, representing the first unambiguously characterised WF5 adduct, as well as the first heptacoordinate adduct of a transition-metal pentafluoride. DFT-B3LYP methods have been used to investigate the reduction of [WF5(NC5H5)2]+ to WF5(NC5H5)2, supporting a two-electron reduction of WVI to WIV by nucleophilic attack and diprotonation of a pyridyl ligand in the presence of free C5H5N, followed by comproportionation to WV.  相似文献   

5.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

6.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

7.
The Novel cis‐[Bi3I12]3?‐Anion in Tri(n‐butyl)methylammoniumdodecaiodo‐tribismutate By reaction of equivalent amounts of BiI3, KI and I2 in [N(CH3) (n‐C4H9)3][N(SO2CF3)2] as Ionic Liquid, transparent reddish crystals with the composition [N(CH3)(n‐C4H9)3]3[Bi3I12] are formed. Concerning to X‐ray diffraction investigations based on single crystals as well as powders, [N(CH3)(n‐C4H9)3]3[Bi3I12] crystallizes monoclinic (P21/c; a = 2383.0(5); b = 1241.0(3); c = 2493.0(5) pm; β = 97.50(3)°; Z = 4). The anion consists of distorted (BiI6)‐octahedra, which are face‐shared via cis‐oriented octahedral faces. With the cis‐[Bi3I12]3?‐anion such a connectivity is firstly described.  相似文献   

8.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

9.
The structure of the title supramolecular complex, [Cu(C7H5O2)2(C5H6N2)2]·0.75C6H6, has been determined. The Cu2+ ion lies on an inversion centre and is coordinated by four O atoms of two opposing benzoate mol­ecules and two pyridine N atoms of two opposing amino­pyridine mol­ecules. The partially occupied benzene site lies across a twofold rotation axis. The crystal structure is dominated by two‐dimensional networks containing two different hydrogen‐bonded rings [(16) and (8)].  相似文献   

10.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   

11.
The title compound, [Cu2(OH)2(C12H8N2)2(H2O)2][Cu(C10H9NO5S)2]·6H2O, is comprised of a copper‐centred complex cation and a copper‐centred complex anion; the cation lies about an inversion centre and in the anion the Cu atom lies on an inversion centre. In the doubly charged bridged dicopper cation, each Cu centre has distorted square‐pyramidal geometry. In the square‐planar dianion, two sulfonate ligands are trans coordinated to the Cu atom via a deprotonated hydroxyl O atom and an imine N atom, forming two six‐membered chelate rings. The structure is stabilized by an extensive hydrogen‐bond system and aromatic‐ring stacking interactions.  相似文献   

12.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

13.
Equilibrium structures of the isomers and transition states of their interconversion in the system C4H11M+ (M = Si, Ge) have been obtained at theB3LYP level of theory using the cc-pVTZ basis set. The structures of these stationary points are close for Si and Ge; the most stable isomer in both systems is the tertiary cation (C2H5)(CH3)2M+, the second in energy is complex with ethylene [(CH3)2HM·C2H4]+. The secondary cation (C2H5)2HM+ is third in energy isomer, the height of the barrier of interconversion for these three cations being practically independent on M. However, for M = Ge a substantial decrease in the energy of isomeric forms corresponding to complexes with alkanes is observed. As a result, in the system C4H11Ge+ the fourth in energy is isomer [(C2H5)Ge·C2H6]+ rather than [(C2H5)H2Ge·C2H4]+ as for M = Si. Nevertheless, the height of the barriers for transition into these structures, although decreasing from M = Si to Ge, remain rather high, and the most favorable route of decomposition in both systems is the elimination of ethylene.  相似文献   

14.
The conformation of the cationic part of the title compound, [{(C6H5)2POH0.5}2CH2]I3 or dppmO2H+·I3? (dppm is di­phenyl­phosphino­methane), is determined by hydrogen bonds between cations of monoprotonated [(C6H5)2P(=O)]2CH2 (dppmO2). Symmetric P=O?H?O=P bridging, with H atoms lying on centres of inversion, leads to chain‐like polymeric cations, (dppmO2H+)x, made up of H?OP(C6H5)2—CH2—(C6H5)2PO? moieties. These are, in turn, cross‐connected by non‐classical C—H?I contacts between the (dppmO2H+)x methyl­ene‐group H atoms and the terminal I atoms of the triiodide anions, which display crystallographic inversion symmetry.  相似文献   

15.
The reaction between BiI3 and two equivalents of dmpu (dmpu = N,N′-dimethylpropylene urea) in thf (tetrahydrofuran) or toluene affords dark red crystals of the complex [Bi(dmpu)6][Bi3I12] which was characterised by X-ray crystallography and consists of octahedral [Bi(dmpu)6]3+ cations and [Bi3I12]3? anions both with 3 symmetry. An analogous reaction between SbI3 and dmpu afforded orange crystals of what is probably a hydrolysis product, [C5NH6]2[H(dmpu)2][Sb2I9], which was also characterised by X-ray crystallography and contains a face-shared bioctahedral [Sb2I9]3? anion with two pyridinium cations and a hydrogen bonded [H(dmpu)2]+ cation. [CH2?C(C6H4-4-NO2)CH2NMe3]I and one equivalent of SbI3 afforded the orange crystalline complex [CH2?C(C6H4-4-NO2)CH2NMe3]3[Sb2I9] an X-ray crystallographic study of which revealed a face-shared bioctahedral [Sb2I9]3? anion similar to that present in [C5NH6]2[H(dmpu)2][Sb2I9]. Four equivalents of BiI3 and [CH2?C(C6H4-4-NO2)CH2NMe3]I afforded the complex [CH2?C(C6H4-4-NO2)CH2NMe3]3[Bi3I12], the [Bi3I12]3? anion being essentially identical to that encountered in [Bi(dmpu)6][Bi3I12]. [CH3(CH2)2COS(CH2)2NMe3]I and four equivalents of SbI3 yielded orange crystals of the complex [CH3(CH2)2COS(CH2)2NMe3]4[Sb8I28] which was also characterised by X-ray crystallography and shown to contain a new structural type of [E8X28]4? anion (E = As, Sb, Bi; X = halide).  相似文献   

16.
On Chalcogenolates. 170. Reaction of N,N′-Diphenyl Formamidine with Carbon Disulfide 3. Crystal Structure of Potassium N,N′-Diphenyl N-Formimidoyl Dithiocarbamate · Dioxane The title compound K[S2C? N(C6H5)? CH?NC6H5] · C4H8O2 crystallizes with Z = 4 in the monoclinic space group P21/a with cell dimensions a = 10.703(2) Å, b = 18.068(3) Å, c = 10.504(3) Å, β = 100.96(3)°. The crystal structure has been determined from single crystal X-ray data measured at 20°C and refined to a conventional R of 0.052 for 4556 independent reflections (Rw = 0.054). The K+ cation is surrounded of one oxygen, one nitrogen, and three sulfur atoms to form a distorted trigonal bipyramid. The S2CNCN part of the anion, which exists as E, E conformer, is plane. The dioxane molecule has chair conformation without symmetry centre.  相似文献   

17.
The first isolated examples of cationic fluoridotungsten(V) complexes are reported as octacoordinate [WF4(L)4]+ (L=C5H5N, P(CH3)3). The [WF4(NC5H5)4]+ cation is synthesised as its [O3SCF3] salt upon reaction of WF5(NC5H5)2 with [(CH3)3Si(NC5H5)][O3SCF3] in excess C5H5N, whereas [WF4{P(CH3)3}4]+ is accessed directly from WF6 upon reaction with (CH3)3SiO3SCF3 and excess P(CH3)3. These salts were characterised by X-ray crystallography and Raman spectroscopy in the solid state. New geometry indices for octacoordinate complexes (τ8 and τ8′) are introduced, allowing for the facile differentiation of trigonal-dodecahedral (TD) and square-antiprismatic (SA) geometries. This has disambiguated the SA geometries of [WF4(L)4]+ and the geometries of a series of previously reported d0 and d1 MA4B4 complexes. Computational (DFT−B3LYP) studies of [WF4(PH3)4]2+/+ and related model systems demonstrate the occurrence of a second-order Jahn-Teller (SOJT) distortion from TD in d0 complexes to SA in d1 complexes, with the degree of SOJT stabilisation being most significant in 5d complexes containing fluorido ligands and monodentate neutral donors.  相似文献   

18.
The fast atom bombardment mass spectra of a series of neutral methanide and ionic carbene platinum(II) complexes of formula dPePtL2 and [dPePt(LH)2](BF4)2 (dPe = (C6H5)2PCH2CH2P(C6H5)2; L = ? C(OCH3)-NCH3, ? C(OCH3) ? NC6H11, ? C(OCH3) ? NC6H4p ? CH3), respectively are reported. Glycerol, 3-mercapto-1,2-propanediol, bis (2-hydroxyethyl)sulphide, 3-nitrobenzyl alcohol, and 2,4-di-tert-pentylphenol have been used as matrices. Neutral and ionic derivatives containing the same ligand behave similarly and give the same quasi-molecular [dPePtL(L + H)]+ ion by different primary processes. Stepwise breakdown of the ligands L with retention or further loss of atoms or molecules of hydrogen is observed for all these complexes, followed by ejection of radicals from the dPe ligand. Elimination of CH3OH from [dPePtL(L + H)]+ also occurs. The highest ionic yields of both neutral methanide and ionic carbene complexes are observed in 3-mercapto-1,2-propanediol, in bis(2-hydroxyethyl)sulphide, and in 3-nitrobenzyl alcohol with respect to glycerol. The [dPePt(LH)2]2+ doubly charged ions are present in the spectra obtained with 3-nitrobenzyl alcohol and are rather strong when L is ? C(OCH3) ? NCH3 and ? C(OCH3) ? NC6H4p ? CH3. Substitution of ligands L with a molecule or with a fragment of a sulphur containing matrix takes place very seldom with this series of complexes.  相似文献   

19.
In the title one‐dimensional complex, {[MnIII(C9H10NO2)2]Cl}n, the Schiff base ligand 2‐[(2‐hydroxy­ethyl)­imino­methyl]­phenolate (Hsae) functions as both a bridging and a chelating ligand. The MnIII ion is six‐coordinated by two N and four O atoms from four different Hsae ligands, yielding a distorted MnO4N2 octahedral environment. Each [MnIII(Hsae)2]+ cationic unit has the Mn atom on an inversion centre and each [MnIII(Hsae)2]+ cation lies about another inversion centre. The chain‐like complex is further extended into a three‐dimensional network structure through Cl⋯H—O hydrogen bonds and C—H⋯π contacts involving the Hsae rings.  相似文献   

20.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号