首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Poly(1,12-bis(carbazolyl)dodecane-co-thieno[3,2-b]thiophene) (P(2Cz-D-co-TT)), a conducting copolymer was synthesized electrochemically by direct anodic oxidation of 1,12-bis(carbazolyl)dodecane (2Cz-D) and thieno[3,2-b]thiophene (TT) in boron trifluoride diethyl ethrate containing 30% (vol) dichloromethane. As-formed copolymers exhibited high redox activity and reversibility and good conductive properties. The emitting property of as-formed copolymer was different from those of respective homopolymers, and could be tuned by changing the initiate monomer feed ratios. Thermoelectric investigations revealed that the electrical conductivities of as-obtained copolymer films were between 0.1 and 0.3 S cm−1 at ambient temperature, lower than that of polythieno[3,2-b]thiophene (PTT) (0.42 S cm−1) but two orders of magnitude higher than that of poly(1,12-bis(carbazolyl)dodecane) (P2Cz-D) (10−3 S cm−1). The Seebeck coefficients and the power factors of the copolymers were improved with different degrees compared with those of PTT and P2Cz-D. As expected, the thermoelectric performance of PTT and P2Cz-D were both improved through copolymerization, which may be beneficial to the exploration and investigation of novel organic thermoelectric materials.  相似文献   

2.
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838  相似文献   

3.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used to produce poly(methyl acrylate) (pMA) loops grafted onto silica nanoparticles using doubly anchored bifunctional RAFT agents 1,4‐bis(3′‐trimethoxysilylpropyltrithiocarbonylmethyl)benzene (Z‐group approach) and 1,6‐bis(o,p‐2′‐trimethoxysilylethylbenzyltrithiocarbonyl)hexane (R‐group approach) as mediators. In both cases, molecular weights of the resulting surface‐confined polymer loops increased with monomer conversion, whereas the grafting density was significantly higher in the case of the R‐group supported RAFT polymerization due to mechanistic differences of the RAFT process at the surface. This result was evident from thermogravimetric analysis and supported by scanning electron microscopy. Polymer loops with molecular weights up to 53,000 g mol?1 were accessible with polydispersities of about 2.0 without and 1.5 with the addition of free RAFT agent. UV signals of the detached pMA loops measured via size exclusion chromatography were shifted to higher molecular weights compared with the corresponding RI signals, indicating branching reactions caused by the close proximity of growing radicals and polymer at the surface of the silica nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7656–7666, 2008  相似文献   

4.
A new mesogenic monomer was prepared from biphenyl‐3,3′,4,4′‐tetracarboxylic dianhydride and 4‐aminophenol followed by the acylation of OH groups with propionic anhydride. This diphenol propionate was polycondensed by transesterification with decane‐1,10‐dicarboxylic acid, dodecane‐1,12‐dicarboxylic acid, and eicosane‐1,20‐dicarboxylic acid or with equimolar mixtures of two dicarboxylic acids. The resulting poly(ester imide)s were characterized by elemental analyses, 1H NMR spectra, inherent viscosities, DSC measurements, optical microscopy, and X‐ray measurements with synchrotron radiation at variable temperatures. An enantiotropic smectic A phase in the molten state and a crystalline smectic E (or H) phase in the solid state were found in all cases. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3019–3027, 2000  相似文献   

5.
A functionalized deoxyribonucleic acid (Cz‐DNA) was prepared with carbazolyl ammonium lipid as a triplet host material for phosphorescent material system. It is soluble in organic solvents, which facilitates the sample preparation for the absorption and luminescent properties in solid states. A highly soluble iridium complex, Ir(Cz‐ppy)3 with carbazolyl‐substituted 2‐phenylpyridine ligands was employed for studying the phosphorescence in Cz‐DNA. There is a good overlap between the photoluminescence spectrum of Cz‐DNA and the metal‐to‐ligand charge transfer (MLCT) absorption bands of the iridium complex. This overlap enables efficient energy transfer from the excited state in the host to the MLCT band of Ir(Cz‐ppy)3. In addition, photoluminescence quantum yield of Cz‐DNA was found to be relatively larger than the copolymer (PCzSt) with vinylcarbazole and styrene. Thus, Cz‐DNA was employed as a triplet host material for fabricating multilayered electrophosphorescence devices via modification of its property by doping 5,4‐tert‐butylhexyl‐1,3,4‐oxadiazole (PBD). After doping 30 wt % PBD and 10 wt % Ir(Cz‐ppy)3 into Cz‐DNA, we achieved much improvement in electron injection/transport from an adjacent carrier transport layer, resulting in much improved device performances. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1913–1918, 2010  相似文献   

6.
Ultrahigh‐molecular‐weight linear polyethers were prepared through a reaction between the phenylquinoxaline monomers 2,3‐bis(4‐hydroxyphenyl)‐6‐fluoroquinoxaline and 2,3‐bis(4‐hydroxyphenyl)‐6‐(α,α,α‐trifluoromethyl)quinoxaline and 1,12‐dibromododecane. A new hyperbranched polyether containing a phenylquinoxaline moiety was also prepared from a new self‐polymerizable AB2 monomer, 2,3‐bis(6‐bromohexyloxyphenyl)‐6‐(4‐hydroxyphenyloxy)quinoxaline. All the polyethers were amorphous and soluble in polar aprotic solvents. Their solution‐cast thin films were light yellow, ductile, and optically transparent. The polymers were thermally stable up to 350 °C and had glass‐transition temperatures in the range of 25–83 °C, which depended on the architecture and monomer structure. The monomers and polymers displayed fluorescence maxima in the blue‐light region in the range of 431–449 nm with relatively narrow peak widths; this indicated that they had pure and intense fluorescence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3587–3603, 2004  相似文献   

7.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A new series of aromatic poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups (SPAEEKK‐D) were synthesized from commercially available monomers 1,3‐bis(4‐fluorobenzoyl)‐benzene, sodium 6,7‐dihydroxy‐2‐naphthalenesulfonate, and 4‐(4‐hydroxyphenyl)‐2,3‐phthalazin‐1‐one (DHPZ). Structure–property relationships of the phthalazinone SPAEEKK‐D series poly(arylene ether ether ketone ketone) copolymer were compared with copolymers SPAEEKK‐B and SPAEEKK‐H containing different diols such as 4,4′‐biphenol and hydroquinone, respectively, prepared in our earlier work. Ion exchange capacity (IECw, weight‐based; IECv, volume‐based), thermal stabilities, swelling, proton and methanol transport properties of the membranes were investigated in relation to their structures and compared with those of perfluorinated ionomer (Nafion 117). The SPAEEKK‐D membrane incorporating the phthalazinone monomer DHPZ showed relatively lower water uptake and methanol permeability compared with earlier SPAEEKK‐B and SPAEEKK‐H membranes incorporating biphenol and hydroquinone monomers, respectively. Inclusion of phthalazinone in the SPAEEKK‐D copolymers led to lower water absorption, enabling increased proton exchange concentrations in the hydrated polymer matrix that resulted in more desirable membrane properties for future direct methanol fuel cell applications. The SPAEEKK‐D membranes also showed improved mechanical and thermal properties and oxidative stability compared with the earlier SPAEEKK‐B and ‐H membranes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 989–1002, 2008  相似文献   

9.
To clarify the effects of the central spacer chain structure of divinyl ethers on their cationic cyclopolymerization tendencies, 1,4‐bis[(2‐vinyloxy)ethoxy]benzene ( 1 ), 1,4‐bis[(2‐vinyloxy)ethoxy]butane ( 2 ), 1,6‐bis[(2‐vinyloxy)ethoxy]hexane ( 3 ), 1,8‐bis[(2‐vinyloxy)ethoxy]octane ( 4 ), and 1,4‐bis[(4‐vinyloxy)butoxy]butane ( 5 ) were polymerized with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in methylene chloride (CH2Cl2) at 0 °C at low initial monomer concentration ([M]0 = 0.15 M). The polymerizations of divinyl ethers 2 and 3 gave soluble polymers quantitatively. In contrast, the polymerizations of divinyl ethers 1 , 4 , and 5 underwent gel formation at high monomer conversion. The content of the unreacted vinyl groups of the obtained soluble polymers was measured by 1H NMR spectroscopy. Judging from the relatively low vinyl contents of the polymers produced even in the early stage of the polymerization (monomer conversion < ~20%), the cyclopolymerization occurred to some extent for 2 , 3 , and 4 . On the contrary, the polymers produced from 1 and 5 exhibited the relatively high vinyl content, indicating that the cyclopolymerization tendencies of 1 and 5 were lower than those of 2 , 3 , and 4 . These results are discussed in terms of the structural variety of the spacer chains: (1) the presence of benzene ring ( 1 vs 2 ), (2) their length ( 2 vs 3 and 4 ), and (3) the position of ether oxygen ( 4 vs 5 ). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4002–4012, 2002  相似文献   

10.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A novel bis(ether anhydride) monomer, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride (4), was synthesized from the nitrodisplacement of 4‐nitrophthalonitrile by the bisphenoxide ion of 9,9‐bis(4‐hydroxyphenyl)fluorene (1), followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetracarboxylic acid. A series of poly(ether imide)s bearing the fluorenylidene group were prepared from the bis(ether anhydride) 4 with various aromatic diamines 5a–i via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s 6a–i followed by thermal cyclodehydration to the polyimides 7a–i. The intermediate poly(amic acid)s had inherent viscosities in the range of 0.39–1.57 dL/g and afforded flexible and tough films by solution‐casting. Except for those derived from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all other poly(amic acid) films could be thermally transformed into flexible and tough polyimide films. The glass transition temperatures (Tg) of these poly(ether imide)s were recorded between 238–306°C with the help of differential scanning calorimetry (DSC), and the softening temperatures (Ts) determined by thermomechanical analysis (TMA) stayed in the range of 231–301°C. Decomposition temperatures for 10% weight loss all occurred above 540°C in an air or a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1403–1412, 1999  相似文献   

12.
A new fluorinated diamine monomer, 2′,5′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐p‐terphenyl, was synthesized from the chloro‐displacement of 2‐chloro‐5‐nitrobenzotrifluoride with the potassium phenolate of 2,5‐diphenylhydroquinone, followed by hydrazine palladium‐catalyzed reduction. A series of trifluoromethyl‐substituted polyimides containing flexible ether linkages and laterally attached side rods were synthesized from the diamine with various aromatic dianhydrides via a conventional two‐step process. The inherent viscosities of the poly(amic acid) precursors were 0.84–1.26 dL/g. All the polyimides afforded flexible and tough films. The use of 4,4′‐oxydiphthalic anhydride and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride produced essentially colorless polyimide films. Most of the polyimides revealed an excellent solubility in many organic solvents. The glass‐transition temperatures of these polyimides were recorded between 254 and 299 °C by differential scanning calorimetry, and the softening temperatures of the polymer films stayed in the range of 253–300 °C according to thermomechanical analysis. The polyimides did not show significant decomposition before 500 °C in air or under nitrogen. These polyimides also showed low dielectric constants (2.83–3.34 at 1 MHz) and low moisture absorption (0.4–2.2%). For a comparative study, a series of analogous polyimides based on the nonfluorinated diamine 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1255–1271, 2004  相似文献   

13.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

14.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

15.
An ω‐amino carboxylic acid monomer that contained a nonlinear optical (NLO) chromophore was prepared by a convergent synthesis. Strategies for selective protection/deprotection of the amino and carboxylic acid functionalities were developed. The protected monomer, 4‐[N‐(4‐benzyloxycarbonyl)butyl‐N‐methylamino]‐4′‐[2″,5″‐bis(decyloxy)‐4″‐(phthalimidomethyl)benzylsulfonyl]azobenzene, could be deprotected selectively or sequentially to give HOOC‐monomer‐N‐phthaloyl, benzyl‐OOC‐monomer‐NH2, or HOOC‐monomer‐NH2. Sequential synthesis was performed to yield main‐chain NLO dimers and tetramers. This was accomplished by selective deprotection and dicyclohexylcarbodiimide coupling. The HOOC‐monomer‐NH2 was polymerized by treatment with diphenylphosphoryl azide to give a main‐chain NLO polyamide. The monomer, dimer, tetramer, and polymer NLO materials were characterized by 1H, 13C, IR, and UV–visible spectroscopy as well as by gel permeation chromatography, differential scanning calorimetry, and elemental analysis. The NLO properties of these materials were measured. Thin films of the oligomers and polymer were prepared by spin casting on indium‐tin oxide coated glass. The second‐order NLO properties of the oligomers and polymer thin films were studied by in situ corona poling/second‐harmonic generation and attenuated total reflection methods. The optimal poling temperatures were significantly lower than the melting temperatures or glass‐transition temperatures of the oligomers and polymer. The poling efficiency increased in the following order: monomer, oligomers, and polymer. An electro‐optic coefficient of 4 pm/V at 1.06 μm was obtained for the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 546–559, 2000  相似文献   

16.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

17.
A series of novel, fluorene‐based conjugated copolymers, poly[(9,9‐bis{propenyl}‐9H‐fluorene)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P1 ), poly[(9,9‐bis{carboxymethylsulfonyl‐propyl}fluorenyl‐2,7‐diyl)‐co‐(9,9‐dihexyl‐9H‐fluorene)] ( P2 ) and poly[(9,9‐dihexylfluorene)‐co‐alt‐(9,9‐bis‐(6‐azidohexyl)fluorene)] ( P3 ), are synthesized by Suzuki coupling reactions and their electrochemical properties, in the form of films, are investigated using cyclic voltammetry. The results reveal that the polymer films exhibit electrochromic properties with a pseudo‐reversible redox behavior; transparent in the neutral state and dark violet in the oxidized state. Among the three polymers, P2 possesses the shortest response time and the highest coloration efficiency value. These polymers emit blue light with a band gap value of around 2.9 eV and have high fluorescent quantum yields. Their metal ion sensory abilities are also investigated by titrating them with a number of different transition metal ions; all of these polymers exhibit a higher selectivity toward Fe3+ ions than the other ions tested with Stern–Volmer constants of 4.41 × 106M?1, 3.28 × 107M?1, 1.25 × 106M?1, and 6.56 × 106M?1 for P1 , P2 , water soluble version of P2 ( P2S ) and P3 , respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

19.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

20.
A centrosymmetric polymer precursor, namely 6‐(2,5‐di(thiophen‐2‐yl)‐1H‐pyrrol‐1‐yl)hexan‐1‐amine (TPHA), was synthesized via a Knorr–Paal reaction using 1,4‐di(2‐thienyl)‐1,4‐butanedione and hexane‐1,6‐diamine. The resultant monomer was characterized by Nuclear Magnetic Resonance (1H‐NMR). Electroactivity of TPHA was investigated via cyclic voltammetry. The electronic structure and the nature of electrochromism in P(TPHA) and its copolymer with EDOT, (P(TPHA‐co‐EDOT)), were examined via spectroelectrochemistry studies. P(TPHA) switches between claret red neutral state and blue oxidized state. Optical response times for coloring and bleaching processes of the P(TPHA) and P(TPHA‐co‐EDOT) were found as 2.1 s and 1.6 s, respectively.

The copolymer of TPHA was used to construct dual type polymer electrochromic devices (ECDs) against poly(3,4‐ethylenedioxythiophene) (PEDOT). Spectroelectrochemistry and electrochromic switching out of the devices were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号