首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The resistivity of transparent conducting Al‐ and Ga‐doped ZnO (AZO and GZO) thin films prepared with a thickness in the range from 20 to 200 nm on glass substrates at a temperature below 200 °C was found to increase with exposure time when tested in a high humidity environment (air at 90% relative humidity and 60 °C). The resistivity stability (resistivity increase) was considerably affected by the thin film thickness. In particular, thin films with a thickness below about 50 nm were very unstable. The increase in resistivity is interpreted as carrier transport being dominated by grain boundary scattering resulting from the trapping of free electrons due to oxygen adsorption on the grain boundary surface. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Sensors, which are designed and fabricated in complementary metal oxide semiconductor (CMOS) technology, have become increasingly important in the field of bioelectronics. The standardized industry processes enable a fast, cheap, and reliable fabrication of biosensor devices with integrated addressing and processing units. However, the interfacing of such chips with a liquid environment has been a challenge in recent years. Especially for interfacing living cells with CMOS biosensors different elaborate post‐processes have been proposed. In this article we describe a novel and single step passivation of a CMOS biosensor using a bio‐compatible high‐permittivity thin film, which can be directly applied to the top aluminium layer of a CMOS process. The aluminium oxide and hafnium oxide multi‐layer thin films were prepared using atomic layer deposition at low process temperatures. Electrical IV and capacitance measurements as well as electrochemical leakage current measurements were performed on films grown on aluminium bottom electrodes. The films showed a very low leakage current and were stable up to 6 V at a thickness of just 50 nm. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Large increases of mobility of local segmental relaxation observed in polymer films as the film thickness is decreased, as evidenced by decreases of the glass temperature, are not found for relaxation mechanisms that have longer length scales including the Rouse relaxation modes and the diffusion of entire polymer chains. We show that the coupling model predictions, when extended to consider polymer thin films, are consistent with a large increase of the mobility of the local segmental motions and the lack of such a change for the Rouse modes and the diffusion of entire polymer chains. There are two effects that can reduce the coupling parameter of the local segmental relaxation in thin films. One is the chain orientation that is induced parallel to the surface when the film thickness h becomes smaller than the end-to-end distance of the chains and the other is a finite-size effect when h is no longer large compared to the cooperative length scale. Extremely thin ( ≈ 1.5 nm) films obtained by intercalating a polymer into layered silicates have thickness significantly less than the cooperative length scale near the bulk polymer glass transition temperature. As a result, the coupling parameter of the local segmental relaxation in such thin films is reduced almost to zero. With this plausible assumption, we show the coupling model can explain quantitatively the large decrease of the local segmental relaxation time found experimentally. Received 1 August 2001 and Received in final form 1 December 2001  相似文献   

4.
In this paper we report on the influence of film thickness on the electrical and gas-sensing properties of tin oxide thin films grown by atomic layer deposition (ALD) technique. The nature of the carrier and post-flow gases used in ALD was found to have a dramatic influence on the electrical conductance of the deposited films. Up to a film thickness of 50 nm the sheet conductance of the films increased with the thickness, and above 50 nm the sheet conductance was not significantly influenced by the film thickness. This effect was attributed to oxygen depletion at the film surface. When the depth of oxygen depletion (d dep) was greater than or equal to the film thickness (t), the sheet conductance was thickness dependant. On the other hand, when d dept, the sheet conductance was independent of the film thickness but depended on the depth of the oxygen depletion. This proposed explanation was verified by subjecting the films to different lengths of post-annealing in an oxygen depleted atmosphere. Gas-sensing functionality of the films with various thicknesses was examined. It was observed that the film thickness had a significant influence on the gas-sensing property of the films. When the thickness was greater than 40 nm, the sensitivity of the films to ethanol was found to follow the widely reported trend, i.e., the sensitivity decreases when the film thickness increases. Below the film thickness of 40 nm the sensitivity decreases as film thickness decreases, and we propose a model to explain this observation based on the increase in resistance due to multiple grain boundaries.  相似文献   

5.
Highly (002)‐oriented Al‐doped zinc oxide (AZO) thin films with the thickness of less than 200 nm have been deposited on an oxygen‐controlled homo‐seed layer at 200 °C by DC magnetron sputtering. With the homo‐seed layer being employed, the full‐width at half maximum (FWHM) of the (002) diffraction peak for the AZO ultra‐thin films decreased from 0.33° to 0.22°, and, the corresponding average grain size increased from 26.8 nm to 43.0 nm. The XRD rocking curves revealed that the AZO ultra‐thin film grown on the seed layer deposited in atmosphere of O2/Ar of 0.09 exhibited the most excellent structural order. The AZO ultra‐thin film with homo‐seed layer reached a resistivity of 4.2 × 10–4 Ω cm, carrier concentration of 5.2 × 1020 cm–3 and mobility of 28.8 cm2 V–1 s–1. The average transmittance of the AZO ultra‐thin film with homo‐seed layer reached 85.4% in the range of 380–780 nm including the substrate. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The recent discovery of efficient charge separation in tetragonal–rhombohedral (T‐R) polymorphic phase boundaries (PPBs) in strained BiFeO3 (BFO) films is of great interest, and also raised a question of whether the PPBs could enhance the performance of BFO‐based planar photodetectors. To address it, we prepare BFO films with thickness ranging from 8 to 90 nm on the LaAlO3 substrates, in which the BFO evolves from a pure T phase (without PPBs) to a T‐R mixed phase (with PPBs) due to the strain relaxation. Then, we comparatively investigate the photoconductive properties of these BFO films with the planar device geometry. It is found that the photoconductance first increases and then decreases with increasing film thickness. Particularly, the 50‐nm film containing the pure T phase without any detectable PPBs exhibits the highest photoconductance. This unexpected observation can be understood by analyzing the effects of increasing film thickness and associated phase evolution on the photoconduction‐related parameters.  相似文献   

7.
Excitation wavelengths of 282.4, 273.9 (A band), 252.7, 239.5 and 228.7 nm (B band) resonance Raman spectra were acquired for di‐2‐pyridylketone, and density functional calculations were carried out to help in the elucidation of the photo relaxation dynamics of A‐band and B‐band electronic transitions. The resonance Raman spectra show that the intensity pattern of the A band presents great difference from that of the B band, which indicate that the short‐time A‐band (S0→S4) photo relaxation dynamics have substantial difference from that of B band (S0→S10) . The overall picture of short‐time dynamics and the vibronic coupling mechanisms are interpreted using Albrecht's theory. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

9.
We have studied the effect of physical ageing in thin supported glassy polystyrene films by using ellipsometry to detect overshooting in the expansivity-temperature curve upon heating of aged samples. Films with thickness 10-200 nm have been aged at 70° C and 80° C (below the bulk glass transition temperature). We observe clear relaxation peaks in the expansivity-temperature curve for films thicker than 18 nm but not for the 10 nm film. The intensity of the relaxation peak is inversely proportional to the film thickness, while the temperatures characteristic to the relaxation peak are almost independent of the film thickness. These observations are successfully interpreted by the idea that the surface layer of the order of 10 nm has liquid-like thermal properties. Received 28 October 2002 / Published online: 1 April 2003 RID="a" ID="a"Present address: Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-chou, Aoba-ku, Yokohama 227-8502, Japan; e-mail: kawana@rc.m-kagaku.co.jp  相似文献   

10.
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.  相似文献   

11.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

12.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The authors have grown high‐quality m ‐plane In0.36Ga0.64N (1 00) films on ZnO (1 00) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m ‐plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two‐dimensional mode. X‐ray diffraction measurements have revealed that the m ‐plane InGaN films grow without phase separation reactions at RT. The full‐width at half‐maximum values of the 1 00 X‐ray rocking curves of films with X‐ray incident azimuths perpendicular to the c ‐ and a‐axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space‐mapping has revealed that a 50 nm thick m ‐plane In0.36Ga0.64N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The primary stages of photoinduced processes in tin-doped C60 fullerene films have been studied using a femtosecond pump-probe technique with 150-fs laser excitation pulses (λ = 400 nm) and differential transmission and reflection probing in the 1100–1700 nm range. The relaxation dynamics strongly depends both on the metal-to-fullerene ratio in the film and on the mutual distribution (packing) of components in the nanocomposite material. The observed response signal dynamics is related to features in the charge carrier generation, energy transfer between fullerene molecules, and charge transport between metal and fullerene.  相似文献   

15.
The interior structure, morphology and ligand surrounding of a sputtering‐deposited chromium monolayer and Cr/C and Cr/Sc multilayers are determined by various hard X‐ray techniques in order to reveal the growth characteristics of Cr‐based thin films. A Cr monolayer presents a three‐stage growth mode with sudden changes occurring at a layer thickness of ~2 nm and beyond 6 nm. Cr‐based multilayers are proven to have denser structures due to interfacial diffusion and layer growth mode. Cr/C and Cr/Sc multilayers have different interfacial widths resulting from asymmetry, degree of crystallinity and thermal stability. Cr/Sc multilayers present similar ligand surroundings to Cr foil, whereas Cr/C multilayers are similar to Cr monolayers. The aim of this study is to help understand the structural evolution regulation versus layer thickness and to improve the deposition technology of Cr‐based thin films, in particular for obtaining stable Cr‐based multilayers with ultra‐short periods.  相似文献   

16.
Thick diamond films are known to exhibit remarkably high electrical resistivity and thermal conductivity. However, on thin films, difficulties are often observed to achieve such performances. In this study, the synthesis of ultra‐thin diamond films was optimized towards the possibility to maintain high dielectric performances on layers compatible with today requirements for Silicon‐On‐Diamond technology, and namely aiming at films with thicknesses equal or below 150 nm. The nucleation of diamond nanocrystals is crucial to obtain films with thickness lower than 100 nm. A Bias Enhanced Nucleation step (BEN) was improved to achieve nucleation densities above 1011 cm–2 although the process was also tuned to limit the size of the nanocrystals during this step. The control of the carbonization of the silicon substrate is also essential to reach such a density with a high reproducibility. The BEN is followed by a growth step with optimized conditions. The films were characterized by SEM and Spectroscopic Ellipsometry. Electrical conductivity measurements were conducted on thin diamond films and values obtained on layers below 100 nm were as high as 5 × 1013 Ω cm; a value significantly higher than the state of the art for such thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This study investigates how polarity inversion influences the relationship between the electrical properties of heavily Ga‐doped ZnO (GZO) films deposited by RF magnetron sputtering and their thickness. The electrical properties observed in very thin films are correlated with a change of polarity from O‐polar to Zn‐polar face upon increasing the film thickness based on results of valence band spectra measured by X‐ray photoelectron spectroscopy. It is found that the electrical properties of very thin GZO films deposited on Zn‐polar ZnO templates are significantly improved compared to those deposited on O‐polar face. A low resistivity of 2.62 × 10–4 Ω cm, high Hall mobility of 26.9 cm2/V s, and high carrier concentration of 8.87 × 1020 cm–3 being achieved with 30 nm‐thick GZO films using Zn‐polar ZnO templates on a glass substrate. In contrast, the resistivity of 30 nm‐thick GZO films on bare glass that shows more likely O‐polar is very poor about 1.44 × 10–3 Ω cm with mobility and carrier concentration are only 11.9 cm2/V s and 3.64 × 1020 cm–3, respectively. It is therefore proposed that polarity inversion plays an important role in determining the electrical properties of extremely thin GZO films. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
Strain relaxation in a GaInN/GaN heterostructure is analyzed by combining in situ X‐ray diffraction (XRD) monitoring and ex situ observations. Two different characteristic thicknesses of GaInN films are defined by the evolution of in situ XRD from the full width at half‐maximum of symmetric (0002) diffraction as a function of GaInN thickness. This in situ XRD measurement enables to clearly observe the critical thicknesses corresponding to strain relaxation in the GaInN/GaN heterostructure caused by the formation of surface pits with bent threading dislocations and the generation of misfit dislocations on GaInN during growth. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper, the dynamics of bias stress phenomenon in Sexithiophene (T6) Field Effect Transistors (FETs) has been investigated. T6 FETs have been fabricated by vacuum depositing films with thickness from 10 to 130 nm on Si/SiO2 substrates. After the T6 film structural analysis by X-ray diffraction and the FET electrical investigation focused on carrier mobility evaluation, bias stress instability parameters have been estimated and discussed in the context of existing models. By increasing the film thickness, a clear correlation between the stress parameters and the structural properties of the organic layer has been highlighted. Conversely, the mobility values as a result are found to be almost thickness independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号