首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S2^- and S3^- have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S2^- ground state is of 2IIg, the S3^- ground state is of 2B1 and S3^- has a bent (C2v) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S3^- ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S2^- has been derived according to the ab initio data through the least- squares fitting. The force constants and spectroscopic data for S2^- have been calculated, then compared with other theoretical data. The analytical potential energy function of S3^- have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.  相似文献   

2.
In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X^2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X^2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X^2A') is reasonable and very satisfactory.  相似文献   

3.
伍冬兰  谢安东  余晓光  万慧军 《中国物理 B》2012,21(4):43103-043103
The equilibrium structure of flue gas SO2 is optimized using the density functional theory (DFT)/B3P86 method and CC-PV5Z basis. The result shows that it has a bent (C2v, X1A1) ground state structure with an angle of 119.1184°. The vibronic frequencies and the force constants are also calculated. Based on the principles of atomic and molecular reaction statics (AMIIS), the possible electronic states and reasonable dissociation limits for the ground state of SO2 molecule are determined. The potential functions of SO and 02 are fitted by the modified Murrell-Sorbie+c6 (M-S+c6) potential function and the fitted parameters, the force constants and the spectroscopic constants are obtained, which are all close to the experimental values. The analytic potential energy function of the SO2 (X1A1) molecule is derived using the many-body expansion theory. The contour liues are constructed, which show the static properties of SO2 (XIA1), such as the equilibrium structure, the lowest energies, the most possible reaction channel, etc.  相似文献   

4.
A quasiclassical trajectory study with the sixth-order explicit symplectic algorithm for the N(^4S)+O2(X^3∑g^-) → NO(X^2Ⅱ) +O(^3P) reaction has been reported by employing a new ground potential energy surface. We have discussed the influence of the relative translational energy, the vibrational and rotational levels of O2 molecules on the total reaction cross section. Thermal rate constants at temperatures 300, 600, and 1000 K determined in this work for the reaction are 4.4 × 10^7, 1.8 × 10^10, and 3.1 × 10^11 cm^3mol^-1s^-1, respectively. It is found that they are in better agreement with the experimental data than previous theoretical values.  相似文献   

5.
The total energy loss of N^+q ions (for v 〈 Bohr velocity) grazing on the Al(111) has been simulated without any 'fit' parameter and compared with the experimental data. The energy loss due to the charge exchange, happening before the N^+q hits the Al(111) surface, is studied. The present simulation shows that the energy loss strongly depends on the charge state of the projectile and the lattice orientation of Al(111) surface. The calculated total energy loss agrees with experimental data very well.  相似文献   

6.
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.  相似文献   

7.
王建坤  吴振森 《中国物理 B》2008,17(8):2919-2924
This paper calculates the equilibrium structure and the potential energy functions of the ground state (X^2∑^+) and the low lying excited electronic state (A^2Л) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klei-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional SchrSdinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.  相似文献   

8.
The vector correlations in the reaction F+H2 (v =0-3, j =0-3)→ HF(v', j')+H are investigated using the quasi- classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(Фr) to dihedral angles, denoting k - k' - j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.  相似文献   

9.
范鲜红  王志刚  闫冰  潘守甫  陈波 《中国物理》2007,16(7):1952-1955
B3LYP level density functional theory (DFT) and multiconfiguration self-consistent-field (MCSCF) level ab initio method calculations have been performed on the basis of relativistic effective core potentials to investigate the nature of EuC and EuC2 molecules. The computed results indicate that the ground states of EuC and EuC2 are ^12∑^+ and SA2, respectively. Dissociation potential energy curves of the low-lying electronic states of EuC have been calculated using the MCSCF method, and the same level calculation on EuC2 indicates that the dissociation energy of EuC2 of ground state compares well with the available experimental data. The bond characteristic is also discussed using Mulliken populations.  相似文献   

10.
曾晖  赵俊 《中国物理 B》2012,(7):575-580
In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are Rp-o = 0.1465 am, ZOPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency Ul = 386 cm-1, symmetric stretching frequency v2 = 1095 cm-1, and asymmetric stretching frequency ua = 1333 em-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

11.
BH2和AlH2分子的结构及其解析势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
运用二次组态相关(QCISD)方法,分别选用6-311++G(3df,3pd)和D95(3df,3pd)基组,对BH2和AlH2分子的结构进行了优化计算,得到BH2分子的稳态结构为C2v构型,电子态为2A1、平衡核间距RBH=0.1187nm、键角∠HBH=128.791°、离解能De=3.65eV、基态振动频率ν1(a1)=1020.103cm-12(a1)=2598.144cm-13(b2)=2759.304cm-1.AlH2分子的稳态结构也为C2v构型,电子态为2A1、平衡核间距RAlH=0.1592nm、键角∠HAlH=118.095°、离解能De=2.27eV、基态振动频率ν1(a1)=780.81cm-12(a1)=1880.81cm-1,ν3(b2)=1910.46cm-1.采用多体项展式理论推导了基态BH2和AlH2分子的解析势能函数,其等值势能图准确再现了BH2和AlH2分子的结构特征及其势阱深度与位置.分析讨论势能面的静态特征时得到BH+H→BH2反应中存在鞍点,活化能为150.204kJ/mol;AlH+H→AlH2反应中也存在鞍点,活化能为54.8064kJ/mol. 关键词: 2')" href="#">BH2 2')" href="#">AlH2 Murrell-Sorbie函数 多体项展式理论 解析势能函数  相似文献   

12.
Literature data for the line frequencies of the B3Π(0u+) ← X1Σg+ transition of Cl2 are fitted directly by least squares to obtain new molecular constants. The constants from individual bands are merged to obtain single-valued estimates of the rotational constants for each vibrational level of the B state. The results are combined with recent data from the BX system in emission to obtain new RKR turning points for the B and X states, and Franck-Condon factors for the B-X system. The new constants are also used to provide revised long-range parameters for Cl2(B) which differ from those of earlier work. In particular, the coefficient C5 of the leading term in the inverse-power long-range potential is now found to be C5 = 1.16(2) × 105A?5 cm?1. Theoretical results for the variation of centrifugal distortion parameters for levels near dissociation are tested for Dv and Hv, and an extrapolation based on this behavior is used to facilitate determination of reliable Bv and G(v) values for the highest observed B-state levels.  相似文献   

13.
Using Doppler-free polarization spectroscopy, the hyperfine structure of the B-X system of 79Br2 was measured for the levels B3Π0+u, v′ = 16–28, and X1Σg+, v″ = 1, 2. Besides the nuclear electric quadrupole coupling, the magnetic spin-rotation interaction was analyzed, which varies strongly with the vibrational energy of the electronically excited state. This behavior originates from a perturbing repulsive state Ω = 1u, the potential of which can be estimated in this way.  相似文献   

14.
An effective inversion-rotation Hamiltonian has been developed for NH3 which avoids the necessity of having to include high powers of the inversion motion coordinate in the Taylor expansions of the potential energy and the inverse moment of inertia tensor. This nonrigid bender Hamiltonian describes the centrifugal distortion and the Coriolis interactions in the ground and excited inversion states. It also describes the inversion doublings in the ground and excited vibration-inversion states of ammonia. A least-squares procedure that includes the numerical integration of the Schrödinger wave equation has been used to determine the harmonic force field and the double-minimum inversion potential function for (14NH3, 15NH3) and for (14ND3 and 14NT3).The anomalous rotational dependence of the inversion doublings in the (±l) components of the v4 = 1 state of 14NH3 has been explained by the Coriolis interactions between v2=1, v4 = 1, v2 = 2, v2 = 1, v4 = 1, and v2 = 3 vibration-inversion states.  相似文献   

15.
运用单双迭代三重激发耦合簇理论和相关一致五重基对SiH2的基态结构进行了优化, 并在优化结构的基础上进行了离解能和振动频率的计算. 结果表明: SiH2的基态为C2v结构, 平衡核间距RSi—H= 0.15163 nm, H—Si—H键的键角α=92.363°, 离解能De(HSi—H)=3.2735 eV, 频率ν1a1)=1020.0095 cm-1, ν2a1)=2074.8742 cm-1, ν3a1)=2076.4762 cm-1. 这些结果与实验值均较为相符. 对H2的基态使用优选出的cc-pV6Z基组、对SiH的基态使用优选出的aug-cc-pV5Z基组进行几何构型与谐振频率的计算并进行单点能扫描, 且将扫描结果拟合成了解析的Murrell-Sorbie函数. 与实验结果及其他理论计算结果的比较表明, 本文关于SiH自由基光谱常数(De,Re, ωe, Be, αeωeχe)的计算结果达到了很高的精度. 采用多体项展式理论导出了SiH2C2v, X1A1)自由基的解析势能函数, 其等值势能图准确再现了它的离解能和平衡结构特征. 同时还给出了SiH2(C2v, X1A1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点, 对应于SiH+H→SiH2反应, 势垒高度为0.5084 eV. 关键词: 2')" href="#">SiH2 Murrell-Sorbie函数 多体项展式理论 解析势能函数  相似文献   

16.
The C-H stretching fundamental band ν1 (3033 cm−1) of chloroform CH35Cl3 has been investigated together with the first overtone 2ν1 (5941 cm−1) in order to determine the rotation vibration parameters. From the ν1 band α1C=−0.025 46(41)×10−3 cm−1 and α1B=−0.010 688(44)×10−3 cm−1 were obtained. The hot bands connected to the low lying fundamentals ν3 and ν6 have been analyzed and anharmonicity constants have been derived. Both the parallel and the perpendicular component band of the C-H bending overtone 2ν4 have also been studied. In the parallel band (2410 cm−1) more than 900 lines were included in the fit. In the perpendicular band (2443 cm−1) 2615 lines were fitted using a model with one resonance. Among other things the results C0Cv=0.025 262 (20)×10−3 cm−1, B0Bv=0.134 883 (25)×10−3 cm−1, and (Cζ)v=−0.111 867 56 (30) cm−1 were obtained.  相似文献   

17.
利用圆偏振激光受激Raman抽运,以 C2H2分子为样品选择性地制备了它的电子基态单一转动态(X1Σ+g,ν″2=1,J″的角动量定向布居(orientation).并从圆偏振紫外激光诱导的A1Au(ν′3=1)←X1Σ+g(ν″2=1)的荧光(谱),直接测定了 C2H2(X1Σg,ν″2=1,J″=4,7,8,…,13)的角动量定向布居值.从时间分辨的荧光信号谱测定了角动量定向布居的碰撞弛豫速率常数,同时还研究了由各初始激励的转动态向其他邻近转动态碰撞诱导的角动量定向布居转移. 关键词:  相似文献   

18.
The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.  相似文献   

19.
More than two thousand Stark resonances of the ν4 and 2ν2 band transitions of 14NH3 and 15NH3 were observed at Doppler-limited resolution with a CO laser. Fourier transform infrared spectroscopy on 15NH3 is also carried out. Thirty-six new microwave transitions including seven perturbation-enhanced transitions are observed in the v4 = 1 excited vibrational state of 14NH3 and 15NH3. Accuracies of all available spectroscopic data on the v4 = 1 and the v2 = 2 states are evaluated and analyses of the vibration-rotation spectra are performed. The Coriolis interaction between the closely lying v4 = 1 a (antisymmetric level) and v2 = 2 s (symmetric level) states is explicitly included in the analysis. Smaller Coriolis interactions between the v4 = 1 a and the v2 = 1 s states and between the v2 = 2 s and the v2 = v4 = 1 a states (i.e., (v1, v2, v3, v4) = (0 1 00 11)) are also taken into consideration. The accuracy in determination of the principal molecular constants is 10?6. The parameters thus obtained reproduce the frequencies of the vibration-rotation transitions and inversion transitions within the accuracy of 0.0024 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号