首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To synthesize a fully organic 1D polymer in a novel twist-stacked topology, we designed a peptide monomer HC≡CCH2-NH-Ile-Leu-N3, which crystallizes with its molecules H-bonded along a six-fold screw axis. These H-bonded columns pack parallelly such that molecules arrange head-to-tail, forming linear non-covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist-stack along the screw axis. Crystals of this monomer, on heating, undergo single-crystal-to-single-crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4-triazole-linked polymer in a twist-stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre-decided topologies.  相似文献   

2.
From the viewpoint of controlled polymer synthesis, topochemical polymerization based on crystal engineering is very useful for controlling not only the primary chain structures but also the higher‐order structures of the crystalline polymers. We found a new type of topochemical polymerization of muconic and sorbic acid derivatives to give stereoregular and high‐molecular weight polymers under photo‐, X‐ray, and γ‐ray irradiation of the monomer crystals. In this article, we describe detailed features and the mechanism of the topochemical polymerization of diethyl‐(Z,Z)‐muconate as well as of various alkylammonium derivatives of muconic and sorbic acids, which are 1,3‐diene mono‐ and dicarboxylic acid derivatives, to control the stereochemical structures of the polymers. The polymerization reactivity of these monomers in the crystalline state and the stereochemical structure of the polymers produced are discussed based on the concept of crystal engineering, which is a useful method to design and control the reactivity, structure, and properties of organic solids. The reactivity of the topochemical polymerization is determined by the monomer crystal structure, i.e. the monomer molecular arrangement in the crystals. Polymer crystals derived from topochemical polymerization have a high potential as new organic crystalline materials for various applications. Organic intercalation using the polymer crystals prepared from alkylammonium muconates and sorbates is also described.  相似文献   

3.
To synthesize a fully organic 1D polymer in a novel twist‐stacked topology, we designed a peptide monomer HC≡CCH2‐NH‐Ile‐Leu‐N3, which crystallizes with its molecules H‐bonded along a six‐fold screw axis. These H‐bonded columns pack parallelly such that molecules arrange head‐to‐tail, forming linear non‐covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist‐stack along the screw axis. Crystals of this monomer, on heating, undergo single‐crystal‐to‐single‐crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4‐triazole‐linked polymer in a twist‐stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre‐decided topologies.  相似文献   

4.
The topochemical synthesis of a miscible polymer blend is described. The azide‐ and alkyne‐decorated tetrol 1 crystallizes as two different conformers. Both conformers exhibit self‐sorted head‐to‐tail alignment with proximally placed reacting groups such that topochemical polymerization yields two types of polymer chains, each containing only one type of conformer. The orientation of complementary reactive groups in one of the head‐to‐tail‐arranged conformers favors the formation of cis‐triazole linkages, and the other favors the trans‐triazole linkages. Crystals of 1 on heating gave a perfect polymer blend containing equal amounts of cis‐triazole‐linked and trans‐triazole‐linked polymers. As each conformer is H‐bonded to four conformers of the other kind, the polymerization yields a perfect polymer blend wherein each polymer chain is surrounded by chains of the other type. Thus, the molecular ordering in the prepolymerized state in a crystal is utilized to create a polymer blend.  相似文献   

5.
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose-based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X-ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal-to-crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent-free, catalyst-free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution-phase polymerization.  相似文献   

6.
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose‐based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X‐ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal‐to‐crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent‐free, catalyst‐free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution‐phase polymerization.  相似文献   

7.
Controlling the reciprocity between chemical reactivity and supramolecular structure is a topic of great interest in the emergence of molecular complexity. In this work, we investigate the effect of a covalent reaction as a trigger to depolymerize a supramolecular assembly. We focus on the impact of an in situ thiol–ene reaction on the (co)polymerization of three derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with cysteine, hexylcysteine, and alkyl side chains: Cys-BTA, HexCys-BTA, and a-BTA. Long supramolecular polymers of Cys-BTA can be depolymerized into short dimeric aggregates of HexCys-BTAvia the in situ thiol–ene reaction. Analysis of the system by time-resolved spectroscopy and light scattering unravels the fast dynamicity of the structures and the mechanism of depolymerization. Moreover, by intercalating the reactive Cys-BTA monomer into an unreactive inert polymer, the in situ thiol–ene reaction transforms the intercalator into a sequestrator and induces the depolymerization of the unreactive polymer. This work shows that the implementation of reactivity into supramolecular assemblies enables temporal control of depolymerization processes, which can bring us one step closer to understanding the interplay between non-covalent and covalent chemistry.

We report on the controlled depolymerization of supramolecular 1D polymers into well-defined dimers triggered by a covalent reaction on the side chains of the monomer.  相似文献   

8.
New aspects of anionic polymerization of 4-membered lactones are presented, attention being paid to regioselectivity of ß-lactones ring-opening reactions. It has been demonstrated that supramolecular complexes of alkali metal alkoxides used as initiators enable control of lactones polymerization, and due to anion activation yield polymers with specific molecular architecture. Synthesis of the analogue of natural polymer poly(3-hydroxybutyrate) via anionic polymerization of ß-butyrolactone is discussed.  相似文献   

9.
超分子构筑调控合成结构规整的梯形聚合物及其应用研究   总被引:1,自引:1,他引:0  
综述了"超分子构筑调控的逐步偶联/聚合法",该方法将高分子化学与超分子化学相结合,利用多种类型的超分子弱键协同作用首先构筑预期的梯形超分子结构,再经聚合得到共价键梯形高分子.利用该方法合成了一系列结构规整的氧桥基和有机桥基梯形聚硅氧烷以及碳基梯形聚酯,并利用侧基间π-π叠加作用实现了对聚合物立体构型控制.扼要介绍了梯形聚合物在先进材料方面的应用,例如梯形聚硅氧烷液晶光致取向膜;由梯形聚硅氧烷合成的管状聚硅氧烷在高室温储存期微电子环氧塑封料方面的应用;以及基于梯形聚硅氧烷的拟筛板聚合物在二阶非线性光学材料方面的应用等.  相似文献   

10.
Polymer topologies exert a significant effect on its properties, and polymer nanostructures with advanced architectures, such as cyclic polymers, star‐shaped polymers, and hyperbranched polymers, are a promising class of materials with advantages over conventional linear counterparts. Cyclic polymers, due to the lack of polymer chain ends, have displayed intriguing physical and chemical properties. Such uniqueness has drawn considerable attention over the past decade. The current review focuses on the recent progress in the design and development of cyclic polymer with an emphasis on its synthesis and bio‐related properties and applications. Two primary synthetic strategies towards cyclic polymers, that is, ring‐expansion polymerization and ring‐closure reaction are summarized. The bioproperties and biomedical applications of cyclic polymers are then highlighted. In the end, the future directions of this rapidly developing research field are discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1447–1458  相似文献   

11.
Cyclic polymers are the simplest topological isomers of linear macromolecules, but exhibit properties that differ from linear chains in ways that remain imperfectly understood. The difficulty of synthesizing appropriately pure and high molecular weight cyclic samples has hindered experimental studies. Ring-closure methods, while versatile, are inherently limited in the range of molecular weights that can be achieved. Ring-expansion methods are a much more promising strategy toward obtaining high molecular weight cyclic polymers. The current review focuses on recent developments in ring-expansion polymerization strategies toward the synthesis of high molecular weight cyclic polymers. Significant progress in the last decade has made the synthesis of cyclic polymers possible by a variety of methods, such as ruthenium- and tungsten-catalyzed ring-expansion metathesis polymerization, organocatalytic and Lewis acid-catalyzed zwitterionic polymerization, RAFT and nitroxide-mediated radical polymerization, among many others. While the study of cyclic polymers has long been hampered by synthetic challenges, the recent resurgence of interest in this field presents an exciting opportunity for chemists. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2892–2902  相似文献   

12.
Branched polystyrenes have been synthesized using atom transfer radical polymerization (ATRP) of styrene in the presence of divinyllbenzene (DVB) as branching comonomer. The synthesis was completed via facile one pot approach. Mole ratio of styrene to DVB in range of 5:1-30:1 was employed to obtain soluble polymers. The kinetics of the polymerization and evolution of polymer compositions were revealed by determining the conversions of reactants by gas chromatography (GC). The growth of molecular weight was monitored by GPC and the results indicate that the branched polymers were formed by self-condensing vinyl polymerization (SCVP) of AB monomer or macromonomers. The branched structure of the resulting polymers was confirmed by the remarkable discrepancies of the weight average molecular weights determined by GPC and multi angle laser light scattering (MALLS). The specific viscosity of the resulting polymer is also much lower compared with that of linear analogues. The influence of dosage of initiator and catalyst on the yield and molecular weights of the resulting polymers was also investigated.  相似文献   

13.
The problems of the formation of the supramolecular and molecular structure of polymers are considered. Based on kinetic investigations of trioxane polymerization, the thermodynamic approach to the problem of regulating the supramolecular and molecular structure of polymers during synthesis is formulated. A method for producing polymers with the given supramolecular structure is suggested. It is noted that the application of this method allows one to regulate the structure during the synthesis of three-dimensional cross-linked polymer systems as single-component, filled, reinforced, and other composite materials.  相似文献   

14.
A series of symmetrically and unsymmetrically substituted octa‐2,4,6‐triyne‐1,8‐diol derivatives with benzoyl, 4‐dodecyloxybenzoyl, as well as perfluorobenzoyl substituents were prepared and investigated with respect to their crystal structures and topochemical polymerizability. Single‐crystal structures for several of these triacetylene monomers have been obtained and proved that the perfluorophenyl–phenyl interactions played a decisive role in the molecular packing. As a consequence of the geometric requirements imposed by the perfluorophenyl–phenyl interactions, packing parameters appropriate for a topochemical triacetylene polymerization in the sense of either a 1,6‐ or a 1,4‐polyaddition along different crystallographic axes were observed in two cases, and UV irradiation led to successful polymerization. Raman as well as solid‐state 13C NMR spectra of the obtained polymers revealed that the polymerization had predominantly proceeded in the form of a 1,4‐polyaddition.  相似文献   

15.
The first topochemical 1,6-polymerization of a triene has been observed. The required supramolecular structure for this polymerization was achieved by the pi-pi stacking of the isonicotinate functionality. The crystal environment of this polymerization reaction controlled both the molecular and supramolecular structure of the polymer and allowed its structure to be determined by single-crystal X-ray diffraction.  相似文献   

16.
In order to offer new tools for developing structure-property relationships for intramolecular associative polymers (polysoaps), the synthesis of three families of comb-like amphiphilic cationic polymers with great structure variability is described. These polymers with amphiphilic repeating units are polyacryl or methacrylamides laterally substituted by a group containing a quaternary ammonium site and a hydrophobic alkyl side chain with 10-16 carbon atoms. Two complementary synthesis methods were developed successfully. In the first method, the tertiary amine groups of neutral polymer precursors were quaternised with various n-alkyl bromides. Five polymers were obtained in this way. On the contrary, the second method consisted of synthesizing first amphiphilic cationic acryl or methacrylamide monomers. The 11 monomers thus obtained were then polymerised by conventional free radical polymerisation in solution. The polymers obtained by both methods only differed in their molecular weights, the second method leading to much higher molecular weights (up to 2 × 106 g/mol). A preliminary investigation of the properties of a few of these polymers in solution showed interesting amphiphilic behaviour. The variation of the reduced viscosity of hydro-methanolic polymer solutions with polymer concentration revealed a strong intramolecular macromolecular folding. The microdomains corresponding to the intramolecular association of the hydrophobic alkyl side chains were eventually characterised by pyrene fluorescence spectroscopy. The local polarity of the pyrene probe was considerably lowered with respect to that of the surrounding aqueous phase and was dependent upon the macromolecular structure of the amphiphilic cationic polymers.  相似文献   

17.
Zusammenfassung Es werden allgemeine Reaktionsprinzipien und Mechanismen von Festkörperpolymerisationen beschrieben. Von besonderem Interesse für die Darstellung sterisch einheitlicher Polymere sind topochemische, d.h. gitterkontrollierte Polymerisationen. Diese Reaktionen nützen die speziellen Packungseigenschaften von organischen Molekülenm in ihren Kristallen aus. Beispiele für topochemische Polymerisationen sind die Vierzentren-Photopolymerisation von Diolefinen und die Festkörperpolymerisation von Monomeren mit konjugierten Dreifachbindungen. Es werden einige Regeln zum Zusammenhang zwischen Reaktivität und Packung gegeben und der Zusammenhang zwischen Polymerisationsmechanismus und der Morphologie der Polymeren diskutiert. Die Polydiacetylene können als perfekte, makroskopische Einkristalle erhalten werden. Sie eignen sich deshalb besonders zur Untersuchung der Eigenschaften von vollständig kristallinen Polymeren. Einige physikalische Eigenschaften der Polydiacetylene werden diskutiert.
Summary Principles and mechanisms of solid state polymerizations are described. Topochemical, i. e. lattice controlled polymerizations are of special interest for the synthesis of especially sterically uniform polymers. These reactions utilize the special packing properties of organic molecules in their crystals. Examples of topochemical polymerizations are the four-center-type photopolymerization of diolefins and the solid state polymerization of diacetylenes. Some rules relating reactivity in the solid state and packing properties are given and the relation between polymerization mechanism and polymer morphology are discussed. Polydiacetylenes which can be obtained as macroscopic nearly defect free polymer single crystals are of special interest for the study of the behaviour of totally crystalline polymers. Some physical properties of polydiacetylenes are discussed.


Vortrag gehalten auf der Physikertagung 20.–23. Sept. 1977 in Karlsruhe.  相似文献   

18.
Diphenyldiacetylene can be preorganized by self-assembly or external-templating, followed by topochemical polymerization under UV irradiation to form polydiphenyldiacetylene. Such a resulting polymer is a promising photocatalyst for organic pollutant degradation under visible light.  相似文献   

19.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

20.
The emerging technologies (e.g. in optics, microelectronics, medicine...) require the availability of synthetic polymers with continuously more sophisticated properties and performances. The best way for the polymer chemist to face this challenge is to tailor the molecular structure of the chains. Nowadays, the progress in the living/controlled polymerization mechanisms is such that the so-called macromolecular engineering is a vivid reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号