首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024-T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk.  相似文献   

2.
A problem of the development of a plastic zone in the vicinity of a physical cut in the plain strain and stress states is posed and solved on the basis of a discrete deformation model under the assumption of an ideal elastoplastic medium. The Tresca yield condition and the ultimate plasticity condition are used in studying the plane stress state. The dependence of the plastic zone length on the external load is compared with a similar dependence obtained on the basis of the Leonov-Panasyuk-Dugdale model. In contrast to the Leonov-Panasyuk-Dugdale model, the distributions of stresses and lengths of plastic zones in the plane strain and stress states are found to be substantially different if elastic compressibility and compressive-tensile stresses along the cut direction are taken into account.  相似文献   

3.
The surface integrity of inconel-718 nickel-base superalloy was investigated using orthogonal cutting at various cutting speeds, depths of cut and chip-tool contact lengths under lubricated conditions. The experimental work involved the determination of residual stress, plastic strain and microhardness distribution in the surface region and the examination of the surface and subsurface using scanning electron and optical microscopy. Both residual stresses and plastic strains decreased and the quality of the mechined surface improved with an increase in cutting speed, a decrease in depth of cut and with tools having controlled chip-tool contact lengths. The results were interpreted in terms of the variation in shear plane length and consequently the variation in tool forces with cutting conditions.  相似文献   

4.
The contour method is applied in an innovative manner to measure the distribution of hoop residual stress in a large martensitic-ferritic steel pipe containing a multi-pass girth weld. First, a novel one-step wire electro-discharge machining cut is conducted to divide the pipe lengthways into two halves. The deformation of the cut halves is then measured and analysed in a way that simultaneously gives maps of hoop stress across the wall thickness on both sides of the pipe and automatically accounts for through-thickness hoop bending effects and how they may vary along the pipe. Finally the contour method results are combined with X-ray diffraction residual stress measurements using the principle of superposition to determine the distribution of the axial and radial residual stresses in the pipe. It is thereby demonstrated how the distribution of three direct components of the residual stress tensor in a welded pipe can be readily determined using a “hybrid” contour measurement approach.  相似文献   

5.
The multiple cut contour method is applied to map longitudinal and transverse components of residual stress in two nominally identical 50 mm thick electron beam welded Ti-6Al-4V alloy plates, one in the as-welded condition and a second welded plate in a post weld heat treated (PWHT) condition. The accuracy and resolution of the contour method results are directly linked to the quality of the electro-discharge machining cut made. Two symmetric surface contour artefacts associated with cutting titanium, surface bowing and a flared edge, are identified and their influence on residual stresses calculated by the contour method is quantified. The former artefact is controlled by undertaking a series of cutting trials with reduced power settings to find optimal cutting conditions. The latter is mitigated by attaching 5 mm thick sacrificial plates to the wire exit side of the test specimen. The low level of noise in the measured stress profiles for both the as-welded and PWHT plates demonstrates the importance of controlling the quality of a contour cut and the added value of undertaking cutting trials.  相似文献   

6.
The incremental hole-drilling method is widely used in residual stress depth distribution analysis. However, two specific difficulties with the generalization of the incremental method exist, including the consideration of the sample thickness and residual stress states close to the local material’s yield strength. The stress concentration effect of the hole can lead to plastic deformation in the vicinity of the hole, which results in an overestimation of residual stresses. Typically, the effect of the component’s thickness and the plasticity effects are analyzed separately and correction approaches are proposed. In the current paper, we analyze the combined effects of plasticity and thickness on residual stress analysis using the incremental hole-drilling method. A systematic study was performed on steel samples with (i) isotropic and (ii) anisotropic elastic and elasto-plastic material behavior with varying thicknesses ranging between 1 mm and 4 mm. Electronic speckle pattern interferometry (ESPI) hole-drilling experiments were conducted on beam samples loaded using a 4-point bending fixture. Finite element simulations were conducted to gain insight into the effects of incremental hole-drilling. The results indicate that reducing the component’s thickness increases the plastic deformation in the vicinity of the hole and results in significant stress deviations. Thin components bend during hole-drilling as a result of the loss of stiffness, which amplifies the plasticity effect.  相似文献   

7.
A study was conducted to develop a methodology to obtain near-surface residual stresses for laser-peened aluminium alloy samples using the contour method. After cutting trials to determine the optimal cut parameters, surface contours were obtained and a new data analysis method based on spline smoothing was applied. A new criterion for determining the optimal smoothing parameters is introduced. Near-surface residual stresses obtained from the contour method were compared with X-ray diffraction and incremental hole drilling results. It is concluded that with optimal cutting parameters and data analysis, reliable near-surface residual stresses can be obtained by the contour method.  相似文献   

8.
A physical cut model is used to describe the changes in the stress-strain state(SSS)in elastoplastic bodies weakened by cracks. The distance between the crack edges is considered to be finite in contrast to the mathematical cut. The interactive layer with a thickness limited by the possibility of using the hypothesis of continuity is distinguished on the physical cut extension.Distribution of stresses and strains over the layer thickness is constant and does not depend on the geometry of the boundary between the cut and the interactive layer. The relationship between stresses and strains is determined by the deformation plasticity theory. The problem of plane strain or plane stress state of an arbitrary finite body weakened by a physical cut is reduced to solving a system of two variational equations for displacement fields in the body parts adjacent to the interactive layer. The proposed approach eliminates the singularity in stress distribution in contrast to the mathematical cut model. Use of local strength criteria allows us to determine the time, point and direction of the fracture initiation. Possibilities of the proposed model are illustrated by solving the problems of determining the SSS of a rectangular body weakened by a physical cut under symmetric and antisymmetric loadings.  相似文献   

9.
This paper describes the results of a residual stress measurement repeatability study using the contour method. The test specimen is an aluminum bar (cut from plate), with cross sectional dimensions of 50.8 mm?×?76.2 mm (2 in?×?3 in) with a length of 609.6 mm (24 in). There are two bars, one bar with high residual stresses and one bar with low residual stresses. The high residual stress configuration (±150 MPa) is in a quenched and over-aged condition (Al 7050-T74) and the low residual stress configuration (±20 MPa) is stress relieved by stretching (Al 7050-T7451). Five contour measurements were performed on each aluminum bar at the mid-length of successively smaller pieces. Typical contour method procedures are employed with careful clamping of the specimen, wire electric discharge machining (EDM) for the cut, laser surface profiling of the cut faces, surface profile fitting, and linear elastic stress analysis. The measurement results provide repeatability data for the contour method, and the difference in repeatability when measuring high or low magnitude stresses. The results show similar repeatability standard deviation for both samples, being less than 10 MPa over most of the cross section and somewhat larger, around 20 MPa, near the cross section edges. A comparison with published repeatability data for other residual stress measurement techniques (x-ray diffraction, incremental hole drilling, and slitting) shows that the contour method has a level of repeatability that is similar to, or better than, other techniques.  相似文献   

10.
The surface integrity of inconel-718 nickel-base superalloy was investigated using orthogonal cutting at various cutting speeds, depths of cut and chip-tool contact lengths under unlubricated conditions. The experimental work involved the determination of residual stress, plastic strain and microhardness distribution in the surface region and the examination of the surface and subsurface using scanning electron and optical microscope. The results are interpreted in terms of the variation in shear-plane length and consequently the variation in tool forces with the cutting conditions. The results are compared with similar results obtained under lubricated conditions. It is found that the lubricant is effective at low cutting speeds in reducing the tool forces that led to lower hardness and plastic strain in the surface region. In general, the severity of surface damage in terms of intensity and total area affected was decreased with the application of a lubricant. Both residual stresses and plastic strains decreased and the quality of the machined surface improved with an increase in cutting speed, a decrease in depth of cut and with tools having controlled chip-tool contact lengths.  相似文献   

11.
Exploring a recently developed mesoscale continuum theory of dislocation dynamics, we derive three predictions about plasticity and grain boundary formation in crystals. (1) There is a residual stress jump across grain boundaries and plasticity-induced cell walls as they form, which self-consistently acts to attract neighboring dislocations; residual stress in this theory appears as a remnant of the driving force behind wall formation under both polygonization and plastic deformation. We derive the predicted asymptotic late-time dynamics of the grain-boundary formation process. (2) During grain boundary formation at high temperatures, there is a predicted cusp in the elastic energy density. (3) In early stages of plasticity, when only one type of dislocation is active (single-slip), cell walls do not form in the theory; instead we predict the formation of a hitherto unrecognized jump singularity in the dislocation density.  相似文献   

12.
An exact knowledge of residual stresses that exist within the engineering components is essential to maintain the structural integrity. All mechanical strain relief (MSR) techniques to measure residual stresses rely on removing a section of material that contains residual stresses. Therefore, these techniques are destructive as the integrity of the components is compromised. In slitting method, as a MSR technique, a slot with an increasing depth is introduced to the part incrementally that results in deformations. By measuring these deformations the residual stress component normal to the cut can be determined. Two orthogonal components of residual stresses were measured using the slitting method both experimentally and numerically. Different levels of residual stresses were induced into beam shaped specimens using quenching process at different temperatures. The experimental results were then compared with those numerically predicted. It was shown that while the first component of residual stress was being measured, its effect on the second direction that was normal to the first cut was inevitable. Finally, a new cutting configuration was proposed in which two components of residual stresses were measured simultaneously. The results of the proposed method indicated a good agreement with the conventional slitting.  相似文献   

13.
An elastic–plastic finite element model is developed for 3D orthogonal cutting of discontinuous chips. The tool is P20 while the workpiece is made of 6-4 brass. Examined under the condition of low cutting speed are the initial crack location, the direction of crack growth and variations of discrete chips. These predictions are made possible by application of the strain energy density (SED) theory. The initial crack was formed above the tool tip and grew progressively along the stationary values of the SED function until the trajectory intersects with the free surface. The plastic deformation and friction result in a high equivalent stress in the secondary deformation zone of the first longitudinal chip. Stresses are also high at the location of crack initiation. The chip node near the tool face is sensitive to the contact of the tool face. As more residual stress prevails after the first longitudinal cut, degradation of the workpiece surface prevails and should be accounted for.  相似文献   

14.
Based on von Mises’ yield criterion, deformation theory of plasticity and Swift’s hardening law, elasto-plastic deformation of variable thickness annular disks subjected to external pressure is studied. A nonlinear shooting method using Newton’s iterations with numerically approximated tangent is designed for the solution of the problem. Considering a thickness profile in the form of a general parabolic function, the condition of occurrence of plastic deformation at the inner and outer edges of the annular disk is investigated. A critical disk profile is determined and the corresponding elastic–plastic stresses as well as the residual stress distribution upon removal of the applied pressure are computed and discussed.  相似文献   

15.
We describe non-contact scanning with a confocal laser probe to measure surface contours for application to residual stress measurement. (In the recently introduced contour method, a part is cut in two with a flat cut, and the part deforms by relaxation of the residual stresses. A cross-sectional map of residual stresses is then determined from measurement of the contours of the cut surfaces.) The contour method using laser scanning is validated by comparing measurements on a ferritic steel (BS 4360 grade 50D) weldment with neutron diffraction measurements on an identical specimen. Compared to lower resolution touch probe techniques, laser surface-contouring allows more accurate measurement of residual stresses and/or measurement of smaller parts or parts with lower stress levels. Furthermore, to take full advantage of improved spatial resolution of the laser measurements, a method to smooth the surface contour data using bivariate splines is developed. In contrast to previous methods, the spline method objectively selects the amount of smoothing and estimates the uncertainties in the calculated residual stress map.  相似文献   

16.
A method is proposed to study the distribution of residual stresses in a semicircular notch in a hollow cylindrical specimen after advanced surface plastic deformation. The initial information used in the method is one or two experimentally determined components of the residual stress tensor in the hardened layer of the smooth specimen. The problem is solved using a finite element technique taking into account initial plastic strains, which are set in correspondence to the residual stresses according to the laws of elasticity. The effect of the hardening technology and notch depth on the distribution of residual stresses is studied. Experimental verification of the method showed that the calculated and experimental data on the stress distribution over the depth of the layer are in good agreement.  相似文献   

17.
This article considers a steel–stud–concrete hybrid structure with a Fibre Reinforced Polymer plate adhesively-bonded to the steel member. Owing to the combination of ductile and brittle materials and connections present, the failure behavior of such a structure can be influenced by residual stresses, which in turn depend on the plasticity-inducing load paths previously experienced by the structure. Plasticity of only the stud connections generates a different residual stress pattern from plasticity of only the steel member, and an understanding of the mechanics of residual stress generation in each case is fundamental to the development of a framework of ideas on path dependency in such structures. Measurements of deformation do not necessarily permit faithful reconstruction of residual stress profiles, as these measurements typically give total (elastic plus plastic) deformations from the times that the measurements start, while the residual stresses are related to the elastic components of deformation from the times that the structural components were manufactured. Numerical work is thus needed to determine residual stresses. To that end, a verified finite element program is here used to investigate residual stress patterns in the above hybrid structure due to plasticity of either the studs or the steel member. For yield of the steel, the effects on the residual stresses of initial self-equilibrating stresses in the steel member are investigated. Crucial to the success of the analyses are curvilinear or multi-linear loading/unloading constitutive relationships not only for the materials, but also for the connections. The residual stress profiles from the steel yield and stud yield analyses are examined and compared, and ideas for extension of the work are suggested.  相似文献   

18.
现有残余应力计算方法未能考虑材料塑性变形和焊接接头刚度不匹配的影响,使得焊接残余应力计算结果和实际残余应力存在较大偏差.在2219-T87铝合金钨极氩弧焊焊接头残余应力测试基础上,提出一种基于非线性有限元和材料弹性模量分区的残余应力—释放应变曲线的残余应力计算方法,研究了材料塑性变形和接头刚度不匹配对焊接残余应力计算的影响.结果表明,焊接接头中非均质材料塑性不匹配可以引起对于残余应力计算的较大误差;材料塑性变形对残余应力的影响大于接头刚度不匹配对残余应力的影响.所提出方法修正了传统方法在焊接接头的残余应力计算中由于未考虑接头非均质材料塑性不匹配而引起的误差.  相似文献   

19.
The incremental hole-drilling technique (IHD) is a widely established and accepted technique to determine residual stresses in peened surfaces. However, high residual stresses can lead to local yielding, due to the stress concentration around the drilled hole, affecting the standard residual stress evaluation, which is based on linear elastic equations. This so-called plasticity effect can be quantified by means of a plasticity factor, which measures the residual stress magnitude with respect to the approximate onset of plasticity. The observed resultant overestimation of IHD residual stresses depends on various factors, such as the residual stress state, the stress gradients and the material’s strain hardening. In peened surfaces, equibiaxial stresses are often found. For this case, the combined effect of the local yielding and stress gradients is numerically and experimentally analyzed in detail in this work. In addition, a new plasticity factor is proposed for the evaluation of the onset of yielding around drilled holes in peened surface layers. This new factor is able to explain the agreement and disagreement found between the IHD residual stresses and those determined by X-ray diffraction in shot-peened steel surfaces.  相似文献   

20.
应用干涉云纹测量工艺应力分布   总被引:5,自引:0,他引:5  
本文就冷胀孔周残余应力分布的测量技术和干涉螺接孔周干涉应力分布的测量技术进行了实验研究。沿着径向将试件切割,以释放欲测的应力,同时用干涉云纹技术测量由于释放应力而引起的附加应变场。文中还就残余应力在循环载荷作用下的松弛问题进行了实验研究。提供了典型的实验结果,讨论了引起实验误差的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号