首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conventional contour method determines one component of residual stress over the cross section of a part. The part is cut into two, the contour (topographic shape) of the exposed surface is measured, and Bueckner’s superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple residual-stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The multiple-cut contour method results agree very well with independent measurements using neutron diffraction and with a computational, finite-element model of the indentation process.  相似文献   

2.
A study was conducted to develop a methodology to obtain near-surface residual stresses for laser-peened aluminium alloy samples using the contour method. After cutting trials to determine the optimal cut parameters, surface contours were obtained and a new data analysis method based on spline smoothing was applied. A new criterion for determining the optimal smoothing parameters is introduced. Near-surface residual stresses obtained from the contour method were compared with X-ray diffraction and incremental hole drilling results. It is concluded that with optimal cutting parameters and data analysis, reliable near-surface residual stresses can be obtained by the contour method.  相似文献   

3.
The contour method is applied in an innovative manner to measure the distribution of hoop residual stress in a large martensitic-ferritic steel pipe containing a multi-pass girth weld. First, a novel one-step wire electro-discharge machining cut is conducted to divide the pipe lengthways into two halves. The deformation of the cut halves is then measured and analysed in a way that simultaneously gives maps of hoop stress across the wall thickness on both sides of the pipe and automatically accounts for through-thickness hoop bending effects and how they may vary along the pipe. Finally the contour method results are combined with X-ray diffraction residual stress measurements using the principle of superposition to determine the distribution of the axial and radial residual stresses in the pipe. It is thereby demonstrated how the distribution of three direct components of the residual stress tensor in a welded pipe can be readily determined using a “hybrid” contour measurement approach.  相似文献   

4.
The multiple cut contour method is applied to map longitudinal and transverse components of residual stress in two nominally identical 50 mm thick electron beam welded Ti-6Al-4V alloy plates, one in the as-welded condition and a second welded plate in a post weld heat treated (PWHT) condition. The accuracy and resolution of the contour method results are directly linked to the quality of the electro-discharge machining cut made. Two symmetric surface contour artefacts associated with cutting titanium, surface bowing and a flared edge, are identified and their influence on residual stresses calculated by the contour method is quantified. The former artefact is controlled by undertaking a series of cutting trials with reduced power settings to find optimal cutting conditions. The latter is mitigated by attaching 5 mm thick sacrificial plates to the wire exit side of the test specimen. The low level of noise in the measured stress profiles for both the as-welded and PWHT plates demonstrates the importance of controlling the quality of a contour cut and the added value of undertaking cutting trials.  相似文献   

5.
We describe non-contact scanning with a confocal laser probe to measure surface contours for application to residual stress measurement. (In the recently introduced contour method, a part is cut in two with a flat cut, and the part deforms by relaxation of the residual stresses. A cross-sectional map of residual stresses is then determined from measurement of the contours of the cut surfaces.) The contour method using laser scanning is validated by comparing measurements on a ferritic steel (BS 4360 grade 50D) weldment with neutron diffraction measurements on an identical specimen. Compared to lower resolution touch probe techniques, laser surface-contouring allows more accurate measurement of residual stresses and/or measurement of smaller parts or parts with lower stress levels. Furthermore, to take full advantage of improved spatial resolution of the laser measurements, a method to smooth the surface contour data using bivariate splines is developed. In contrast to previous methods, the spline method objectively selects the amount of smoothing and estimates the uncertainties in the calculated residual stress map.  相似文献   

6.
Cutting-induced plasticity can lead to elevated uncertainties in residual stress measurements made by the contour method. In this study plasticity-induced stress errors are numerically evaluated for a benchmark edge-welded beam to understand the underlying mechanism. Welding and cutting are sequentially simulated by finite element models which have been validated by previous experimental results. It is found that a cutting direction normal to the symmetry plane of the residual stress distribution can lead to a substantially asymmetrical back-calculated stress distribution, owing to cutting-induced plasticity. In general, the stresses at sample edges are most susceptible to error, particularly when the sample is restrained during cutting. Inadequate clamping (far from the plane of cut) can lead to highly concentrated plastic deformation in local regions, and consequently the back-calculated stresses have exceptionally high values and gradients at these locations. Furthermore, the overall stress distribution is skewed towards the end-of-cut side. Adequate clamping (close to the plane of cut) minimises errors in back-calculated stress which becomes insensitive to the cutting direction. For minimal constraint (i.e. solely preventing rigid body motion), the plastic deformation is relatively smoothly distributed, and an optimal cutting direction (i.e. cutting from the base material towards the weld region in a direction that falls within the residual stress symmetry plane) is identified by evaluating the magnitude of stress errors. These findings suggest that cutting process information is important for the evaluation of potential plasticity-induced errors in contour method results, and that the cutting direction and clamping strategy can be optimised with an understanding of their effects on plasticity and hence the back-calculated stresses.  相似文献   

7.
This paper describes the results of a residual stress measurement repeatability study using the contour method. The test specimen is an aluminum bar (cut from plate), with cross sectional dimensions of 50.8 mm?×?76.2 mm (2 in?×?3 in) with a length of 609.6 mm (24 in). There are two bars, one bar with high residual stresses and one bar with low residual stresses. The high residual stress configuration (±150 MPa) is in a quenched and over-aged condition (Al 7050-T74) and the low residual stress configuration (±20 MPa) is stress relieved by stretching (Al 7050-T7451). Five contour measurements were performed on each aluminum bar at the mid-length of successively smaller pieces. Typical contour method procedures are employed with careful clamping of the specimen, wire electric discharge machining (EDM) for the cut, laser surface profiling of the cut faces, surface profile fitting, and linear elastic stress analysis. The measurement results provide repeatability data for the contour method, and the difference in repeatability when measuring high or low magnitude stresses. The results show similar repeatability standard deviation for both samples, being less than 10 MPa over most of the cross section and somewhat larger, around 20 MPa, near the cross section edges. A comparison with published repeatability data for other residual stress measurement techniques (x-ray diffraction, incremental hole drilling, and slitting) shows that the contour method has a level of repeatability that is similar to, or better than, other techniques.  相似文献   

8.
Neutron diffraction measurements have been performed to determine the full residual stress tensor along the expected crack path in an austenitic stainless steel (Esshete 1250) compact tension weld specimen. A destructive slitting method was then implemented on the same specimen to measure the stress intensity factor profile associated with the residual stress field as a function of crack length. Finally deformations of the cut surfaces were measured to determine a contour map of the residual stresses in the specimen prior to the cut. The distributions of transverse residual stress measured by the three techniques are in close agreement. A peak tensile stress in excess of 600 MPa was found to be associated with an electron beam weld used to attach an extension piece to the test sample, which had been extracted from a pipe manual metal arc butt weld. The neutron diffraction measurements show that exceptionally high residual stress triaxiality is present at crack depths likely to be used for creep crack growth testing and where a peak stress intensity factor of 35 MPa√m was measured (crack depth of 21 mm). The neutron diffraction measurements identified maximum values of shear stress in the order of 50 MPa and showed that the principal stress directions were aligned to within ~20° of the specimen orthogonal axes. Furthermore it was confirmed that measurement of strains by neutron diffraction in just the three specimen orthogonal directions would have been sufficient to provide a reasonably accurate characterisation of the stress state in welded CT specimens.  相似文献   

9.
An exact knowledge of residual stresses that exist within the engineering components is essential to maintain the structural integrity. All mechanical strain relief (MSR) techniques to measure residual stresses rely on removing a section of material that contains residual stresses. Therefore, these techniques are destructive as the integrity of the components is compromised. In slitting method, as a MSR technique, a slot with an increasing depth is introduced to the part incrementally that results in deformations. By measuring these deformations the residual stress component normal to the cut can be determined. Two orthogonal components of residual stresses were measured using the slitting method both experimentally and numerically. Different levels of residual stresses were induced into beam shaped specimens using quenching process at different temperatures. The experimental results were then compared with those numerically predicted. It was shown that while the first component of residual stress was being measured, its effect on the second direction that was normal to the first cut was inevitable. Finally, a new cutting configuration was proposed in which two components of residual stresses were measured simultaneously. The results of the proposed method indicated a good agreement with the conventional slitting.  相似文献   

10.
The surface integrity of inconel-718 nickel-base superalloy was investigated using orthogonal cutting at various cutting speeds, depths of cut and chip-tool contact lengths under lubricated conditions. The experimental work involved the determination of residual stress, plastic strain and microhardness distribution in the surface region and the examination of the surface and subsurface using scanning electron and optical microscopy. Both residual stresses and plastic strains decreased and the quality of the mechined surface improved with an increase in cutting speed, a decrease in depth of cut and with tools having controlled chip-tool contact lengths. The results were interpreted in terms of the variation in shear plane length and consequently the variation in tool forces with cutting conditions.  相似文献   

11.
The residual stress distributions in two 7449 aluminium alloy rectilinear blocks have been determined using neutron diffraction. Heat treatment included cold water immersion quenching and a period of precipitation hardening. Quenching induced very high magnitude residual stresses into the two blocks. One block was measured in this condition while the other was incrementally machined by milling to half thickness. Neutron diffraction measurements were made on the milled half thickness block at equivalent locations to the unmachined block. This permitted through thickness measurements from both blocks to be compared, revealing the redistribution of residual stresses induced by machining. A square cross section post in the centre of the machined face was left to act as a stress free reference sample. The distortions arising on the face opposite to that being milled were measured using a co-ordinate measuring machine. The residual stresses and distortion arising in the blocks have been compared to finite element analysis prediction and found to generally agree. Material removal only caused distortion and the residual stresses to redistribute; there was no stress relaxation evident.  相似文献   

12.
This paper describes a method for extending the capability of the contour method to allow for the measurement of spatially varying multi-axial residual stresses in prismatic, continuously processed bodies. Currently, the contour method is used to determine a 2D map of the residual stress normal to a plane. This work uses an approach similar to the contour method to quantify multiple components of eigenstrain in continuously processed bodies, which are used to calculate residual stress. The result of the measurement is an estimate of the full residual stress tensor at every point in the body. The approach is first outlined for a 2D body and the accuracy of the methodology is demonstrated for a representative case using a numerical experiment. Next, an extension to the 3D case is given and the accuracy is demonstrated for representative cases using numerical experiments. Finally, measurements are performed on a thin sheet of Ti-6Al-4V with a band of laser peening down the center (assumed to be 2D) and a thick laser peened plate of 316L stainless steel to show that the approach is valid under real experimental conditions.  相似文献   

13.
The surface integrity of inconel-718 nickel-base superalloy was investigated using orthogonal cutting at various cutting speeds, depths of cut and chip-tool contact lengths under unlubricated conditions. The experimental work involved the determination of residual stress, plastic strain and microhardness distribution in the surface region and the examination of the surface and subsurface using scanning electron and optical microscope. The results are interpreted in terms of the variation in shear-plane length and consequently the variation in tool forces with the cutting conditions. The results are compared with similar results obtained under lubricated conditions. It is found that the lubricant is effective at low cutting speeds in reducing the tool forces that led to lower hardness and plastic strain in the surface region. In general, the severity of surface damage in terms of intensity and total area affected was decreased with the application of a lubricant. Both residual stresses and plastic strains decreased and the quality of the machined surface improved with an increase in cutting speed, a decrease in depth of cut and with tools having controlled chip-tool contact lengths.  相似文献   

14.
Residual stresses in turned AISI 4340 steel   总被引:1,自引:0,他引:1  
The residual-stress distribution in the surface region of workpieces of annealed AISI 4340 steel that is turned under unlubricated conditions is determined using a deflection etching technique. The absolute value of the residual stresses at the machined surface are low and increase with an increase in depth beneath the machined surface to a maximum. They then decrease with a further increase in depth eventually becoming vanishingly small. Peak residual stresses are tensile at cutting speeds of 0.5 and 1.0 ms−1 and are compressive at a cutting speed of 1.5 ms−1 for all feed rates and depths of cut. Peak residual stresses and depth of the stressed region increase with an increase in feed rate and depth of cut, but decrease with an increase in cutting speed. The results of this investigation can be interpreted in terms of the variation of tool forces with cutting conditions.  相似文献   

15.
Applied stresses on a residual stress model have previously been obtained by measuring the residual stresses and the resultant stresses generated by applying a load. The present paper reports that the applied stresses and the residual stresses on the residual stress model can be obtained by measuring two resultant stresses generated by applying loads of two different magnitudes. In the proposed method, the residual stresses need not be obtained from the residual stress model before applying a load. The residual stress model used to test the proposed method is a circular disk with frozen stresses that is subjected to a diametral compressive load at a certain angle. The applied stresses and the residual stresses on a residual stress model were experimentally and precisely obtained by digital photoelasticity using linearly polarized light.  相似文献   

16.
百万核电汽轮机红套低压转子工作环境的蒸汽参数较低,各级轮盘均处于湿度较大的工作区域,易产生应力腐蚀,引起裂纹萌生和扩展.为提高轮盘的抗腐蚀能力,降低工作应力是一个有效的方法.通过热处理方法,在轮盘表面形成预压应力以抵消部分旋转拉应力是可行的方法,而产生适当深度和大小的预压应力则需对热处理过程进行谨慎的设计.本文以汽轮机轮盘为研究对象,建立轴对称有限元模型,通过对ABAQUS软件的二次开发,实现对轮盘热处理过程的温度场及应力场进行数值模拟.计算综合考虑了非线性的材料热物性参数、力学性能参数、表面换热系数及不同材料组织转变的相变潜热、热物性参数和力学参数,通过对不同热处理方法得到的残余应力场的比较,获得了较合理的水冷方式,为热处理工艺确定提供参考.  相似文献   

17.
利用改进的应力释放法、X射线衍射法以及Raman光谱,对平面界面结构金刚石复合片表面热残余应力分别进行了实验研究,得到了金刚石层表面热残余应力值及其分布规律,同时得到了基体厚度与热残余应力的相关关系.研究结果表明,采用应力释放法、X射线衍射法及Raman光谱法测试PDC表面热残余应力,其测试结果均与有限元分析结果相吻合,证明了这三种方法的有效性.其中,X射线衍射法测试结果的误差最大,应力释放法其次,Raman光谱法最为精确.由于应力释放法应变片尺寸及X射线衍射法光斑照射范围的限制,无法在试样表面上取较多的测试点,因此难以得到理想的热残余应力分布曲线.而Raman光谱法中所采用的激光光斑仅5μm,可以取更多的测试点,因此其结果更能真实的反映金刚石层表面热残余应力的分布规律.本文的研究结果为精确测试PDC热残余应力,从而为优化PDC界面结构、提高PDC使用性能提供了理论和实验依据.  相似文献   

18.
This paper presents repeated slitting method measurements of the residual stress versus depth profile through the thickness of identically prepared samples, which were made to assess repeatability of the method. Measurements were made in five 17.8 mm thick blocks cut from a single plate of 316L stainless steel which had been uniformly laser peened to induce a deep residual stress field. Typical slitting method techniques were employed with a single metallic foil strain gage on the back face of the coupon and incremental cutting by wire EDM. Measured residual stress profiles were analyzed to assess variability of residual stress as a function of depth from the surface. The average depth profile had a maximum magnitude of −668 MPa at the peened surface. The maximum variability also occurred at the surface and had a standard deviation of 15 MPa and an absolute maximum deviation of 26 MPa. Since measured residual stress exceeded yield strength of the untreated plate, microhardness versus depth profiling and elastic–plastic finite element analysis were combined to bound measurement error from inelastic deformation.  相似文献   

19.
Focht  G.  Schiffner  K. 《Experimental Mechanics》2003,43(1):97-104
In conjunction with the incremental hole-drilling method, a new evaluation procedure is presented for determining the residual stress state in components. In contrast to the classical method, the whole displacement field around the drilled hole is measured using the electronic speckle pattern interferometry technique. The displacement patterns, measured without contact to the surface, are then correlated with those obtained by finite-element simulations using statistical methods. The simulated displacement patterns, used for calibration purposes, result from the application of properly defined basic loads. In this way, the values and the orientation of the residual stresses can be determined by superposition of these properly scaled and shifted basic loads. Even complex states of stress can be evaluated. The theoretical background and experimental results are presented.  相似文献   

20.
A basic understanding of distortion problems requires the analysis of a complete manufacturing process including an almost complete overview of residual stress states in the component during each production step. To reduce the measurement time in the future, three measurements methods (X-ray diffraction, micromagnetic and blind hole drilling methods) have been used to analyze residual stress states in machined AISI 52100 ball bearing rings. X-ray diffraction was used as a state-of-the-art method for machining induced residual stresses with pronounced gradients. The ring exhibited a complex residual stress state with high tensile residual stresses at the surface, a strong gradient in depth, and also showed some variation along the outer circumference due to a superimposition of machining induced residual stresses and effects from the clamping device process. Due to this surface state, micromagnetic signals depend on the analyzing frequency. A calibration of the signals was only possible with the X-ray diffraction data. The results of the three different measurement methods correlate reasonably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号