首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorinated butyl rubber composites were prepared by a compounding and vulcanizing process using phenolic resin (PF) as the vulcanizing agent and carbon black as filler. Instead of using the conventional vulcameter method to determine the vulcanizing parameters, the vulcanization temperature and time were obtained by differential scanning calorimetry (DSC) and tensile testing, respectively. Dynamic mechanical analysis (DMA) showed that, higher PF content resulted in higher E′ and lower tanδ, and variations of E′ and tanδ with temperature were consistent with the time-temperature equivalence principle. It is proposed that chlorinated butyl rubber using phenolic resin as the vulcanizing agent could be used as potential damping materials in the temperature range 20–100°C and frequencies 0.1–100 Hz.  相似文献   

2.
Vegetable oil modified phenolic resin (PF) mixed with four kinds of rubber modifiers, i.e., styrene butadiene rubber, styrene butadiene 2-vinyl pyridine rubber, nitrile butadiene rubber, and carboxyl nitrile butadiene rubber (CNBR), were used as matrices for organic friction materials. The mechanical and thermal degradation properties of all of the blends were investigated. Friction and braking tests of the organic friction materials based on the different matrices and reinforced with hybrid fibers were carried out. The results showed that the resin was most compatible with CNBR; the CNBR/PF blend possessed much higher impact and toughness, and the friction material based on this blend as a matrix exhibited better friction and braking performance. It was concluded that CNBR, the rubber with the most reactive groups, resulted in better mechanical properties of the friction material, and hence optimized the friction, wear and braking performances.  相似文献   

3.
Fluorine atoms were introduced into the molecular chain of a phenolic resin (PR) by a two-step acid synthesis process to improve its thermal and hydrophobic properties. The successful synthesis of a fluorinated phenolic resin/phenolic resin blend (F-PR/PR) was proven by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance 19F (19F-NMR). The thermal properties of F-PR/PR were analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) and the results indicate that the F-PR/PR had good thermal stability. The hydrophobic properties of PR were effectively modified as demonstrated by the water drop contact angles. The flexural and tribological properties of F-PR/PR were also investigated. The fluorine atom, by virtue of its electronegativity, size and bond strength with carbon, can be used to create composites from F-PR/PR with remarkable properties. For comparison, two other resin blends were also synthesized.  相似文献   

4.
The mechanical and damping properties of blends of ethylene-vinyl acetate rubber (VA content >40% wt) (EVM)/ethylene-propylene-diene copolymer (EPDM) and EVM/nitrile butadiene rubber (NBR), both with 1.4 phr BIPB (bis (tert-butyl peroxy isopropyl) benzene) as curing agent, were investigated by dynamic mechanical analysis (DMA). The effect of added polyvinyl chloride (PVC), amido donor N-cyclohexyl-2-benzothiazole sulfonamide (CZ), and dicumyl peroxide (DCP) as a substitute curing agent, on the damping and mechanical properties of both rubber blends were studied. The results showed that in EVM/EPDM/PVC blends, EPDM was immiscible with EVM and could not expand the damping range of EVM at low temperature. PVC was miscible with EVM and dramatically improved the damping property of EVM at high temperature while keeping good mechanical performance. In EVM/NBR/PVC blends, PVC was partially miscible with EVM/NBR blends and remarkably widened the effective damping temperature range (EDTR) from 41.1°C for EVM/NBR to 62.4°C. Curing agents BIPB and DCP had a similar influence on EVM/EPDM blends. DCP, however, dramatically raised the height of tan δ peak of EVM/NBR = 80/20 and expanded its EDTR to 64.9°C. CZ had no obvious influence on the EVM/EPDM blends cured with BIPB. However, a small content of CZ enlarged the tan δ peak of EVM/NBR = 80/20 in both height and width, but at the cost of a deterioration of mechanical performance.  相似文献   

5.
The damping and mechanical properties of ethylene-vinyl acetate rubber (EVM)/nitrile butadiene rubber (NBR) blends, with BIPB (bis (tert-butyl peroxy isopropyl) benzene) as curing agent, were investigated by DMA. It was proved by mechanical performance, DMA and crosslink density data that a chemical crosslinking reaction occurred between EVM and NBR. A new tan δ peak appeared between 40°C and 60°C in EVM/NBR = 80/20, which we suggest was due to a new molecular chain generated between EVM and NBR. Thus, the effective damping temperature range (EDTR) of EVM/NBR = 80/20 was widened from 31.6°C of EVM and 31.7°C of NBR to 40.7°C. The addition of sulfur, as a curing agent for NBR, greatly raised the height of the damping peak of EVM/NBR blend, but only slightly widened the EDTR at a cost of deterioration of mechanical performance. Zinc diacrylate (Zn (Ac)2), as a possible graft addition to the blends, enlarged the damping peak of EVM/NBR, especially widening the EDTR of EVM/NBR = 80/20 to 50.9°C, but with a decline of mechanical properties. PVC was partially miscible with EVM/NBR blends and dramatically widened the EVM/NBR = 80/20 EDTR to 62.4°C.  相似文献   

6.
With ethylene vinyl-acetate copolymer (EVM) and polylactic acid (PLA) blends as the matrix, dicumyl peroxide (DCP) as the curing agent and azodicarbonamide (AC) as the foaming agent, EVM/PLA foamed blends were prepared by compression molding. The effects of different amounts of AC, DCP, and silica, as well as varying foaming time, on the cell structure and damping properties of the EVM/PLA-foamed blends were examined by scanning election microscopy (SEM) and dynamic mechanical analysis (DMA). The results showed that the cell size and damping properties varied little with increasing AC content in the compounds; however, the cell size declined slightly as DCP increased and the damping properties rose slightly, exhibiting an optimum set of properties at 5 phr of DCP. The cell size declined dramatically and damping increased significantly as the foaming time was increased. Moreover, both suddenly increased after 5 min foaming. It was found that the damping properties of the foamed materials increased with decreasing cell size and increasing number of cells. The cell size also decreased and damping properties increased as the silica content was increased. The silica interacted more strongly with EVM than with PLA.  相似文献   

7.
Melt blended polyamide (PA)/liquid crystal polymer (LCP) blends were prepared and their structures and properties were studied. The tensile strength and impact strength of the PA/LCP blends increased with increasing small amount of LCP content. Compared with a pure PA sample, there was a 17.7% increase in the tensile strength and a 45.5% increase in the impact strength when the LCP content was less than 10%. On the other hand, the Vicat softening temperature decreased with increasing the LCP content. Differential scanning calorimetry (DSC) showed that small addition of LCP was beneficial to increase the crystallinity of PA component for PA/LCP blends and the melting peak for the PA component of PA/LCP blends shifted to lower temperature with increasing LCP content. Scanning electron microscopy (SEM) displayed a layered structure existing in the injection moldings of PA/LCP blends with the LCP crystals having a preferred orientation along the melt flow direction in the sub-skin, shearing layer, and core region. The increased crystallinity of PA component and preferred orientation structure of LCP phase were beneficial to increase the mechanical properties of the PA/LCP blends.  相似文献   

8.
 采用物理方法在高压下制备了酚醛树脂(PF)/累托石(REC)纳米复合材料,用X射线衍射(XRD)、透射电子显微镜(TEM)及热分析(DSC/TGA)等方法,研究了复合材料的物相、显微结构以及热学性能。结果表明,不通过层间高分子聚合反应,不预先对累托石进行有机化处理,在高压下,由聚合物分子插入粘土层间,可以形成剥离型树脂/粘土纳米复合材料,并且其热学性能发生了较大的改变。  相似文献   

9.
Five different types of Dow epoxy blends were studied with differential scanning calorimetry. Each epoxy blend consists of a flexible epoxy resin, DER 736 or DER 732, with one of four different rigid epoxies, DER 317, DER 331, DER 332 and DEN 431, crosslinked by 1,4-bis (3-aminopropyl)-piperazine (BAPP). Longitudinal and shear wave acoustic properties of these epoxy resin blends as a function of the composition were measured at room temperature and an ultrasonic frequency range. All moduli and Poisson's ratios were calculated by using longitudinal velocity, shear velocity and density. These systems all have similar behavior. By increasing the amount of flexible epoxy in a mixture of hard and flexible epoxies a critical composition was found (∼50% by weight for DER 736 and ∼30% for DER 732), below which the acoustic properties, the elastic moduli and Poisson's ratios kept an almost constant value, and above which the velocities, impedances and all moduli decreased, whereas attenuations and Poisson's ratios increased gradually. Many epoxy materials ranging from soft and flexible to hard and rigid have been obtained by epoxy blend technology. Some of them have been applied to make 1–3 composites for medical ultrasound transducers.  相似文献   

10.
Poly(ethene-co-1-butene)-graft-methyl methacrylate-acrylonitrile (PEB-g-MAN), synthesized by suspension grafting copolymerization of methyl methacrylate and acrylonitrile onto PEB, was blended with styrene-acrylonitrile copolymer (SAN). The mechanical properties, phase structure, toughening mechanism, miscibility, and thermal stability of the SAN/PEB-g-MAN blends were studied using a pendulum impact tester, tension tester, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TG). The results showed that PEB-g-MAN has an excellent toughening effect on SAN resin. The notched impact strength of the blends (containing 25 wt% PEB) was 63.3 kJ/m2, which was nearly 60 times that of SAN resin. The brittle-ductile transition of SAN/PEB-g-MAN blends occurred when the weight percentage of PEB was between 17.5 and ~20 wt%. SAN and PEB-g-MAN were partially miscible. The toughening mechanism of the blends changed with the PEB content. When the PEB content was low, the toughening mechanism of the blends was branching and termination of cracks with slight cavitation. As the content of PEB increased, the toughing mechanism gradually changed from branching and termination of crack with slight cavitation to both branching and termination of crack and cavitation, to extensive cavitation, and finally to shear yielding accompanied by cavitation. The phase structure of the blends changed from a “sea-island’’ structure to a cocontinuous structure as the PEB content increased. ATG analysis showed that the thermal properties of the SAN resin in the blends were enhanced by adding the PEB-g-MAN.  相似文献   

11.
A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature (Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.  相似文献   

12.
Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds.  相似文献   

13.
The mechanical properties, morphology, and crystallization behavior of polycarbonate (PC)/polypropylene (PP) blends, with and without compatibilizer, were studied by tensile and impact tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The tensile and impact strengths of PC/PP blends decreased with increasing the PP content due to poor compatibility between the two phases. But the addition of compatibilizer improved the mechanical properties of the PC/PP blends, and the maximum value of the mechanical properties, such as tensile and impact strengths of PC/PP (80/20 wt%) blends, were obtained when the compatibilizer was used at the amount of 4 phr. The SEM indicated that the compatibility and interfacial adhesion between PC and PP phases were enhanced. DSC results that showed the crystallization and melting peak temperatures of PP increased with the increase of the PP content, which indicated that the amorphous PC affected the crystallization behavior. However, both the PC and compatibilizer had little effect on the crystallinity of PP in PC/PP blends based on both the DSC and XRD patterns.  相似文献   

14.
Dielectric properties of polymer blend of polyvinylidenefluoride (PVDF) and polysulfone (PSF) of different wt. % have been studied to understand the molecular motion and their relaxation behavior in the frequency range of 100 Hz to 10 kHz at different temperatures between 30 and 190 °C. The dielectric constant of the blend decreased with frequency and increased with the increasing temperature and PSF content in the blend. The magnitude of dielectric loss also increased with increase in temperature and PSF content. The observed characteristic has been consistently explained in terms of dipolar motions and the plasticization effect brought about by blending of PSF with PVDF. At constant frequency and temperature, the blend follows a linear relationship between logarithm of their dielectric constant and different ratios of blend. The appearance of a peak for each concentration in dielectric loss suggests the presence of relaxing dipoles in the blend. In addition of PSF with PVDF, the peak shifts toward higher frequency side suggesting the speed up the relaxation process. AC dielectric data is also combined with thermally stimulated depolarization current (TSDC) data which is generally studied for low-frequency dielectric properties of polymers blends so as to produce the results in a wide frequency range. The glass transition temperature (Tg) of the blend was studied by differential scanning calorimetric technique (DSC), the Tg was compared and correlated with TSDC peak. The blend samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to study the formation of blend and micro structural properties of the materials. The shifting of peak toward lower diffraction angle side confirms the reduction in particle size with increasing amorphous content in the blend.  相似文献   

15.
This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.  相似文献   

16.
Phenol-formaldehyde resin (PF) composites with a nano-porous graphite additive (NPGA) in various contents were fabricated and the wear behaviors under low and high sliding speeds were studied. The addition of NPGA significantly improved the wear resistance of the PF. The specific wear rates of PF composites under low sliding speed first decreased with increasing NPGA and then slightly increased when the NPGA content surpassed 15?wt%; the specific wear rate of the composite with 15?wt% NPGA was reduced by 77% compared with the neat PF. Under high sliding speed the specific wear rates of the composite material decreased continuously with increasing NPGA content and the maximum wear resistance of the composite with 20?wt% NPGA was more than 12 times that of the neat phenolic resin. The results are attributed to the combined effects of load-capacity and the lubrication role of the included NPGA. The surface morphology of the worn surface was characterized, and the wear mechanism for the composites is discussed.  相似文献   

17.
A series of polycaprolactone (PCL)-based polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer networks (IPNs) were prepared and their damping propertiesand thermal stability, as well as mechanical properties, were systematically studied in terms of composition and the values of the PU isocyanate index (R). The morphologies of the PU/EP IPNs were observed by scanning electron microscope (SEM) and atomic force microscope (AFM) characterization and the relationship between the morphologies and the properties is also discussed. The damping properties and thermal stability measurements revealed that the formation of PU/EP IPNs could significantly improve not only the damping properties but also the thermal stability. Meanwhile, the mechanical tests showed that the tensile strengths of the IPNs decreased, while their impact strengths increased with increasing PU content. The value of the PU isocyanate index also had significant impacts on the properties of the IPNs when the PU to EP ratio was fixed, which could be an effective means for manipulating the fabrication of PU/EP IPNs. From the results obtained, the PCL-based PU/EP IPNs hold promise for use in structural damping materials.  相似文献   

18.
时温等效原理表明固定频率下温度越高,模量越低,而相同温度下频率越低,模量越低,即升高温度与降低频率具有同等效应。根据这一规律,可将聚合物的力学性能随温度的变化转化为这些性能随频率的变化,从而可通过不同温度下的力学性能测试数据,换算成宽频率范围内的材料力学性能表现。为了研究压力作用下橡胶阻尼性能的基本变化规律,通过自由体积理论推导出加压后的修正WLF方程,采用动态热机械分析实验,测试得到丁腈橡胶在不同温度下的损耗因子tanδ对频率ω的曲线,根据计算得到不同压力下的测试温度至室温的平移因子,便可做出加压后的丁腈橡胶的损耗因子-频率谱的主拟合曲线,其曲线的频率跨度达10个数量级以上。结果表明,丁腈橡胶的tanδ测试段在高于参考温度以后出现,而随着压力的增加,玻璃化温度相应升高,峰值往高频移动达1.5个数量级。此结果为研究压力作用下橡胶材料阻尼性能的定量变化提供了理论依据。  相似文献   

19.
Shape memory NR/PCL bio-based blends, where NR served as the reversible phase and PCL served as the switching phase, were prepared using a melt blending process. Peroxide, besides its role as a cross-linking agent to NR, was used to enhance the compatibility between NR and PCL, which was confirmed via Fourier transform infrared spectra and scanning electron microscopy analyses. With increasing peroxide content, the tensile strength increased steadily with decreasing PCL contents, up to 12.3 ± 0.8 MPa for the NR/PCL (70/30) blend at 2 phr peroxide. The shape fixing ratio decreased slightly with increasing peroxide content, especially for high NR content. The values of the shape recovery ratio were high, up to 100%, regardless of PCL content. The recovery stress was found to reach its maximum value around 60°C. In order to consider both fixing ratio (Rf) and recovery ratio (Rr) together, an additional denotation of shape memory index, RfRr, coupling both ratios by the product of the fixing ratio and recovery ratio, is proposed. The shape memory index (RfRr) reached values close to 100%, at the NR/PCL composition of 50/50 and 70/30; in particular, the highest value was for the 50/50 case regardless of peroxide concentration. The shape recovery ratio and fixing ratio remained largely unchanged even after 30 cycles of deformation and recovery processes for a typical NR/PCL/DCP (30/70/0.5) blend which, thus, outperformed all known shape memory blends in the literature.  相似文献   

20.
Abstract

The interphase boundary of incompatible polymer blends such as poly(methyl methacrylate) (PMMA)/natural rubber (NR) and polystyrene (PS)/NR, and of compatible blends such as PMMA/NR/epoxidized NR (ENR) and PS/NR/styrene–butadiene–styrene (SBS) block copolymer, where ENR and SBS were used as compatibilizers, was studied by means of microindentation hardness (H) and microscopy. Cast films of neat PMMA and PS, and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR, and PS/NR/SBS were prepared by the solution method using a common solvent (toluene). Hardness values of 178 and 173 MPa were obtained on the surfaces of the neat PMMA and PS, respectively. After the inclusion of soft phases, the binary (incompatible) and the ternary (compatible) blend surfaces show markedly lower H‐values. Scanning electron and optical microscopy reveal a clear difference at the phase boundary of the surface of compatible (smooth boundary) and incompatible (sharp boundary) blends. The compatibilized blends were characterized by using microhardness measurements, as having the thinnest phase boundary (~30 µm), while incompatible blends were shown to present a boundary of about 60 µm. The hardness values indicate that the compatibilizer is smoothly distributed across the interface between the two blend components. Results highlight that the microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non‐ or compatibilized polymer blends and other inhomogeneous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号