首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new and promising type of selenium film electrode for anodic stripping voltammetry. This method is based on formation of copper selenide onto an in-situ formed selenium-film carbon electrode, this followed by Osteryoung square-wave anodic stripping voltammetry. Copper(II) is also in-situ electroplated in a test solution containing 0.01 mol L-1 hydrochloric acid, 0.05 mol L?1 potassium chloride and 500 µg L?1 Se(IV) at a deposition potential of ?300 mV. The well-defined anodic peak current observed at about 200 mV is directly proportional to the Cu(II) concentration over the range from 1.0 to 100 µg L?1 under the optimized conditions. The detection limit (three sigma level) is 0.2 µg L?1 Cu(II) at 180 s deposition time. Relatively less interferences are shown from most of metal ions except for antimony(III). The method can be applied to analyses of river water and oyster tissue with good accuracy.  相似文献   

2.
A method is described for the sequential determination of Sb(III) and Sb(V) using Osteryoung square wave cathodic stripping voltammetry. It employs an in-situ plated bismuth-film on an edge-plane graphite substrate as the working electrode. Selective electro-deposition of Sb(III)/Sb(V) is accomplished by applying a potential of ?500 mV vs. Ag/AgCl, followed by reduction to stibine at a more negative potential in the stripping step. Stripping was carried out by applying a square wave waveform between ?500 and ?1400 mV to the antimony deposited. The stripping peak current at ?1150 mV is directly proportional to the concentration of Sb( III)/Sb(V). The calibration plots for Sb (III) were linear up to 12.0?µg L?1 depending on the time of deposition. The calibration plots for Sb (V) were linear up to 7.0?µg L?1, also depending on the time of deposition. The relative standard deviation in the determination of 0.1?µg L?1 of Sb(III) is 4.0% (n?=?5), and the limit of detection is as low as 2 ng L?1. In case of 0.1?µg L?1 Sb(V), the relative standard deviation is 3.0% (n?=?5) and the detection limit also is 2 ng L?1. The method was applied to the analysis of river and sea water samples.  相似文献   

3.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

4.
《Analytical letters》2012,45(1-3):271-283
A flow injection system is proposed for catalytic kinetic spectrophotometric determination of trace iron(II + III). The involved reaction is based on the catalytic effect of iron(III) on oxidation reaction of xylenol orange by potassium bromate to form a blue-violet complex. Iron(II) is also determined, being oxidized to iron(III) by potassium bromate. The calibration graph is linear in the range of 0.02–10.0 µg l?1 and 10.0–1100 µg l?1. The relative standard deviation is 1.5% for 4.0 µg l?1 iron(III) and 2.3% for 60.0µg l?1 iron(III) (n = 11). The presented system was applied successfully to the determination of iron in natural waters.  相似文献   

5.
A sensitive and reliable method is described for the determination of total Sb(III,?V) at traces levels by Osteryoung square-wave anodic stripping voltammery (OSWASV). This method is based on the co-deposition of Sb(III,?V) with Bi(III) onto an edge-plane pyrolytic graphite substrate at an accumulation step. OSWASV studies indicated that the co-deposited antimony was oxidised with anodic scans to give an enhanced anodic peak at about 450?mV vs. Ag/AgCl (sat. KCl). The anodic stripping peak current was directly proportional to the total concentration of antimony in the ranges of 0.01–0.10?µg?L?1, 0.10–1.0?µg?L?1 and 1.0–18.0?µg?L?1 with correlation coefficient higher than 0.995 when 2.0?mol?L?1 hydrochloric acid was used. The detection limits calculated as S/N?=?3 was 5.0?ng?L?1 in 2.0?mol?L?1 hydrochloric acid at 180?s deposition time. The relative standard deviation was 5% (n?=?6) at 0.10?µg?L?1 level of antimony. The analytical results demonstrate that the proposed method is applicable to analyses of real water samples.  相似文献   

6.
《Analytical letters》2012,45(12):1846-1856
A preconcentration methodology utilizing the cloud point phenomenon is described for the determination of copper by flame atomic absorption spectrometry. The reagent Sulfathiazolylazo resorsin was used as a complexing agent. The preconcentration factor of 25-fold was obtained. The calibration curve is linear in the range of 4–400 µ g L?1 with a limit of detection of 0.64 µ g L?1. The relative standard deviation (n = 5, 12 µ g L?1) was 3.5%. The cloud point is formed in the presence of phenol at room temperature. The method was successfully applied to the determination of copper in water samples and a standard reference material.  相似文献   

7.
《Analytical letters》2012,45(16):2593-2605
A method was developed for the determination of vitamin B12 based on the enhancement of cobalt (II) on the chemiluminescence (CL) reaction between luminol and percarbonate (powerful source of hydrogen peroxide). The release of cobalt (II) from the vitamin B12 was reached by a simple and fast microwave digestion (20 s microwave digestion time and a mix of nitric acid and hydrogen peroxide). A charge coupled device (CCD) photodetector, directly connected to the cell, coupled with a simple continuous flow system was used to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction.

The optima experimental conditions were established: 8.0 m mol L?1 luminol in a 0.075 mol L?1 carbonate buffer (pH 10.0) and 0.15 mol L?1 sodium percarbonate, in addition to others experimental parameters as 0.33 mL s?1 flow rate and 2 s integration time, were the experimental conditions which proportionate the optimum CL emission intensity. The emission data were best fitted with a second-order calibration graph over the cobalt (II) concentration range from 4.00 to 300 µ g L?1 (r2 = 0.9990), with a detection limit of 0.42 µ g L?1. The proposed method was successfully applied to the determination of vitamin B12 in pharmaceuticals.  相似文献   

8.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

9.
Due to be able to migrate or leach from food packaging materials into the foods and/or beverages, development of a new, sensitive and selective analytical methods for low levels of antimony as a food contaminant is of great importance in terms of food safety. In this context, an ultrasonic-assisted cloud point extraction method was developed for the preconcentration and determination of antimony as Sb(III) using 4-(2-thiazolylazo)resorcinol (TAR) and 2-(2-thiazolylazo)-p-cresol (TAC) as chelating agents and sodium dodecyl sulfate as signal enhancing agent at pH 6.0 and mediated by nonionic surfactant, t-octylphenoxypolyethoxyethanol by flame atomic absorption spectrometry. Using the optimized conditions, the calibration curves obtained from Sb(III) with TAR and TAC were linear in the concentration ranges of 0.5–180 and 1–180 μg L?1 with detection limits of 0.13 and 0.28 μg L?1, respectively. The precision (as relative standard deviations, RSDs) was lower than 3.9 % (25 and 100 μg L?1, n: 6). The method accuracy was validated by the analysis of two standard reference materials. The results obtained were statistically in a good agreement with the certified values at 95 % confidence limit. The method has successfully been applied to the determination of Sb(III) and total Sb in selected beverages, milk and fruit-flavored milk products before and after pre-reduction of Sb(V) to Sb(III) with a mixture of KI/ascorbic acid in acidic media. The Sb(V) contents of samples were quantitatively calculated from analytical difference between total Sb and Sb(III) levels.  相似文献   

10.
《Analytical letters》2012,45(16):2563-2571
Dispersive liquid–liquid microextraction (DLLME) technique combined with electrothermal atomic absorption spectrometry (ET-AAS) was proposed for determination of antimony(III) and total antimony at very low concentrations in water samples. The N-benzoyl-N-phenylhydroxylamine (BPHA) was used as a chelating agent, and chloroform and ethanol were used as extraction and disperser solvents, respectively. The effect of various experimental parameters on the extraction and determination was investigated. The detection limits (3σ) were 0.005 μg L?1 for Sb(III) and 0.008 μg L?1 for total Sb. The developed method was applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

11.
《Analytical letters》2012,45(1-3):12-24
A simple and sensitive flow-injection method is reported for the determination of retinol and α-tocopherol in human blood serum and pharmaceuticals. The method is based on the reduction of vanadium(V) by retinol and α-tocopherol and subsequent reaction of reduced vanadium with luminol to generate chemiluminescence signal. The optimized conditions allow a linear calibration range of 30–2850 µg L?1 and 5–4300 µg L?1 for retinol and α-tocopherol, with relative standard deviations of 1.2–4.6% and 1.5–5.6%, respectively. The detection limits for retinol and α-tocopherol, defined as three times the standard deviation of measured blanks were 23 µg L?1 and 2.15 µg L?1, respectively. The proposed method allowed up to 20 determinations h?1. The tolerance amount of foreign ions/compounds on the determination of retinol and α-tocopherol was also examined. The method was applied to the determination of retinol and α-tocopherol in human blood serum and pharmaceutical samples using hexane extraction with recoveries in the range of 92 ± 2 to 96 ± 1%, and the results obtained were compared with HPLC reference method.  相似文献   

12.
《Analytical letters》2012,45(17):2747-2757
Abstract

Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 µg L?1), butiraldehyde (0.08–0.5 µg L?1), ethanol (39–47% v/v), and copper (371–6068 µg L?1) showed marked similarities, but the concentration levels of n-butanol (1.6–7.3 µg L?1), sec-butanol (LD 89 µg L?1), formaldehyde (0.1–0.74 µg L?1), valeraldehyde (0.04–0.31 µg L?1), iron (8.6–139.1 µg L?1), and magnesium (LD 1149 µg L?1) exhibited differences from samples.  相似文献   

13.
《Analytical letters》2012,45(3):543-554
Abstract

A spectrophotometric procedure based on hydride generation and flow analysis is proposed for determination of antimony (III) [Sb(III)] and total antimony (Sb) in pharmaceutical samples. Firstly, Sb(III) reacts with hydrogen species generated in the system, forming antimony hydride. The reaction leads to a decrease in the permanganate concentration and, hence, in the intensity of the color of this specie, which is spectrophotometrically measured at 528 nm. Total Sb is determined as Sb(III) after Sb(V) reduction using 0.02% (m/v) KI. Some parameters, such as the number of channels of the gas phase separator, injection volume, coil length, and KBH4 concentration, are investigated. The system presents a frequency of ca. 100 h?1 and precision <3.0% [expressed as relative standard deviation (RSD) of 30 measurements using a 3.0 mg L?1 Sb(III) solution]. The analytical curve ranging from 0.5 mg L?1 to 5.0 mg L?1 (r>0.998; n=5) permits limit of detection (LOD) and limit of quantification (LOQ) of 83 and 250 µg L?1. For total Sb, the accuracy is checked by atomic absorption spectrometry applying the t test and the results are in accordance at the 95% confidence level. Recovery tests are used to check the accuracy for Sb(III) determination, and the recoveries are between 95% and 105%.  相似文献   

14.
A selective, simple and fast dispersive micro solid phase extraction method using magnetic graphene oxide (GO) as an efficient sorbent has been developed for the extraction, separation and speciation analysis of chromium ions. The method is based on different adsorption behaviour of Cr(VI) and Cr(III) species onto magnetic GO in aqueous solutions which allowed the selective separation and extraction of Cr(VI) in the pH range of 2.0–3.0. The retained Cr(VI) ions by the sorbent were eluted using 0.5 mL of 0.5 mol L?1 nitric acid solution in methanol and determined by ?ame atomic absorption spectrometry. Total chromium content was determined after the oxidation of Cr(III) to Cr(VI) by potassium permanganate. All effective parameters on the performance of the extraction process were thoroughly investigated and optimised. Under the optimised conditions, the method exhibited a linear dynamic range of 0.5–50.0 µg L?1 with a detection limit of 0.1 µg L?1 and pre-concentration factor of 200. The relative standard deviations of 3.8% and 4.6% (n = 8) were obtained at 25.0 µg L?1 level of Cr(VI) for intra- and inter-day analysis, respectively. The method was successfully applied to the speciation and determination of Cr(VI) and Cr(III) in environmental water samples.  相似文献   

15.
Determination of iron speciation in water is one of the major challenges in environmental analytical chemistry. Here, we present and discuss a method for sampling and analysis of dissolved Fe(II), Fe(III), and Fetotal concentrations in natural thermal water covering a wide range of temperature, pH, chemical composition, and redox conditions. Various methods were tried in the collection, preservation, and storage of natural thermal water samples for the Fe(II) and Fe(III) determinations, yet the resultant Fe speciation determined was often found to be significantly affected by the methodology applied. Due to difficulties in preserving accurate Fe speciation in natural samples for later laboratory analysis, a field-deployed on-site method using ion-chromatography and spectrophotometry was developed and tested. The IC-Vis method takes advantage of ion chromatographic separation of Fe(II) and Fe(III), followed by post-column colour reaction and spectrophotometric detection, thus allowing analysis of Fe(II) and Fe(III) in a single 15-minute run. Additionally, Fetotal can be determined after sample oxidation. The analytical detection limits are ~2 µg L?1 (LOD) using 200–1000 µL injection volumes and depend on the blank and reagent quality. The power of this method relies on the capability to directly determine a wide range of absolute and relative concentrations of Fe(II) and Fe(III) in the field. The field-deployed IC-Vis method was applied for the determination of Fe(II) and Fe(III) concentrations in natural thermal water with discharge temperatures ranging from 12°C to 95°C, pH between 2.46 and 9.75, and Fetotal concentrations ranging from a few μg L?c up to 8.3 mg L?1.  相似文献   

16.
For the first time, a solid lead electrode (PbE) was exploited for adsorptive stripping voltammetric determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent. The calibration graphs for Ni(II) and Co(II) were linear from 0.059 to 0.59 µg L?1 and from 0.029 to 0.29 µg L?1 (accumulation time 120 s), respectively. The analytical parameters such as the detection limit and separation of analytical signals obtained at the solid lead electrode were comparable with those obtained using a lead film electrode while better in comparison to those reported before for the bismuth film or solid bismuth electrodes. Co(II) could be determined in the presence of a large excess of Ni(II) and Zn(II). The proposed electrode was applied to determine Co(II) and Ni(II) traces in certified reference material and a natural water sample with satisfactory results.  相似文献   

17.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

18.
The present study describes chelation of Pb(II) with ascorbic acid and formation of a charge-transfer sensitive ion-pair in the presence of Rhodamine 6G at pH 5.5, and then its extraction to the micellar phase of non-ionic surfactant, PONPE 7.5 by an ultrasound-assisted cloud point extraction method before analysis by FAAS. The various variables affecting ion-pair formation and extraction efficiency were studied and optimised. Under the optimised conditions, the good linear relationships in the ranges of 0.4–150 μg L?1 and 0.8–120 μg L?1 for solvent-based calibration and matrix-matched calibration curves, respectively, were achieved with a pre-concentration factor of 71.4 from pre-concentration of 50-mL sample. Moreover, the limits of detection with good sensitivity enhancements of 124 and 114.5 were 0.13 and 0.24 μg L?1, respectively, while the intra-day and inter-day precision (as RSD%, for five replicate measurements of 5 and 100 μg L?1 in the same day and three succeed days) were in range of 2.8–5.4% and 3.7–6.3%, respectively. The matrix effect on triplicate determination of 50 µg L?1 Pb(II) was also investigated. The accuracy of the method was statistically verified by the analysis of two certified reference materials (CRMs) after digestion with acid mixtures (HNO3-H2O2-HF and HNO3-H2O2) and dilution at suitable ratios. It has been observed that there is statistically not a significant difference between the certified- and found-values. The accuracy was also controlled using the pre-treated sample solutions spiked at different concentration levels, and the good spiked recoveries were obtained in range of 90–102.8%. The method was successfully applied to the determination of trace amounts of lead in water and food matrices with satisfactory results.  相似文献   

19.
Speciation of mercury was accomplished by using a simple interface with photo-induced chemical vapour generation in a high performance liquid chromatography—atomic fluorescence spectrometry (HPLC-AFS) hyphenated system. Acetic acid and 2-mercaptoethanol in the mobile phase were used as photochemical reagent. The operating parameters were optimized to give limits of detection of 0.53 µg L?1, 0.22 µg L?1, 0.18 µg L?1 and 0.25 µg L?1 for inorganic mercury, methylmercury, ethylmercury and phenylmercury, respectively. The method was validated with the certified reference material DORM-2 and applied to the analysis of seafood samples. The HPLC-AFS hyphenated system is simple, environmentally friendly, and represents an attractive alternative to the conventional peroxothiosulfate-borohydride method.  相似文献   

20.
Reversed phase liquid chromatography using UV detection was developed for the simultaneous analysis of Hg(II), Pb(II), Cd(II), Ni(II), Fe(III) and V(V) ions after their complexation with pyrrolidine-dithiocarbamate (PDC). Optimum chromatographic conditions were a μ-Bondapak C18 column and an isocratic mobile phase consisting of 40 mmol L?1 SDS, 34 mmol L?1 TBABr and 68% acetonitrile in 10 mmol L?1 phosphate buffer pH 3.5. The separation of six PDC complexes was achieved within 8 min. Analytical performances and method validation were investigated. The detection limits ranged from 0.16 μg L?1(Fe(III)) to 5.40 μg L?1(Pb(II)). Recoveries obtained for all the studied samples including tap water, whole blood and vegetables were 72–98%. The results obtained from the proposed method were not significantly different compared to those obtained from atomic absorption spectrometry (P = 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号