首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtained a gold nanomaterial/graphene oxide-modified glassy carbon electrode and characterized it using transmission electron microscope, scanning electron microscope, cyclic voltammetry (CV), and X-ray photoelectron spectroscopy techniques. A response of the electrode using square wave anodic stripping voltammetry for Pb2+, Cu2+, and Hg2+ was found linear in the range from 1 × 10–7 to 1 × 10–11 M. The detection limits of Pb2+, Cu2+ and Hg2+ were 0.14, 0.5 and 1.2 pM, respectively. The method was applied to the simultaneous determination of Pb2+, Cu2+ and Hg2+ in seawater samples from a coastal region of Anatolia, and the results corresponded well with the values obtained by inductively coupled plasma-optical emission spectroscopy.  相似文献   

2.
Copper is an indispensable trace element for human health. Too much or too little intake of copper ion (Cu2+) can lead to its own adverse health conditions. Therefore, detection of Cu2+ is always of vital importance. In this work, a simple sensor was developed for rapid detection of trace Cu2+ in water, in which L‐cysteine (Cys) as a molecular probe was self‐assembled on a gold interdigital electrode to form a monolayer for specific capture of Cu2+. The interfacial capacitance of interdigital electrode was detected to indicate the target adsorption level under an AC signal working as the excitation to induce directed movement and enrichment of Cu2+ to the electrode surface. This sensor reached a limit of detection of 4.14 fM and a satisfactory selectivity against eight other ions (Zn2+, Hg2+, Pb2+, Cd2+, Mg2+, Fe2+, As3+, and As5+). Testing of spiked tap water was also performed, demonstrating the sensor's usability. This sensor as well as the detection method shows a great application potential in fields such as environmental monitoring and medical diagnosis.  相似文献   

3.
In this study, a carbon paste electrode modified with a novel 1-(3-aminopropyl) imidazole functionalised crosslinked chlorosulfonated poly(styrene)-divinyl benzene polymer was used for selective and sensitive determination of the trace amounts of Pb2+, Cu2+ and Hg2+ ions by square wave anodic stripping voltammetry. The effect of some parameters such as paste composition, pH, preconcentration time, reduction potential and time, type of supporting electrolyte and potential scan rate on the determination of metal ions were investigated to find the optimal conditions. The effective open-circuit accumulation of the studied metal ions was succeeded only by the modification of the carbon paste electrode with functional polymer. For 6 min open-circuit preconcentration, the detection limit of Pb2+, Cu2+ and Hg2+ was found to be 5, 9 and 14 µgL?1, respectively at 100 mVs?1. The results confirmed that the lower concentration levels of these trace metal ions can be determined with the increase of preconcentration time and/or potential scan rate. Good detection limits and large dynamic concentration ranges were also obtained for their binary and ternary mixtures. The optimised method was successively applied to determine the concentration of Pb2+, Cu2+ ions in the tap water sample and Cu2+ ion in the waste water sample in the presence of possible interfering species (RSD<1%, recoveries 96–110% for 4 min preconcentration).  相似文献   

4.
The new application of C-dec-9-enylcalix[4]resorcinarene (R1), as an ionophore to detect heavy metals (HMs) cations (Cd2+, Hg2+, Cu2+, and Pb2+) in the aqueous media has been investigated through the preparation of an effective mass-sensitive sensor via the exploitation of a flow-type QCM-I technique. By adjusting the ions’ amounts in model solutions over a wide range of concentrations, acquired changes in the oscillating frequency related to the loading of metal ions on the sensor’s surface were gained, and thus favorable metrological parameters displaying the lowest detection limit (LOD) associated with copper ions (10 ppb). Simultaneously, a novel voltammetric sensor was prepared by modifying gold screen-printed electrodes (SPEs) with R1. Electrochemical characterization employing CV, SWV, and EIS was carried out, showing the success of the electrode modification. Then, the experimental conditions of supporting electrolyte, pH, accumulation time, and accumulation potential were optimized to achieve an enhanced detection. The R1@SPE sensor simultaneously detected the HMs (Cd2+, Hg2+, Cu2+, Pb2+), and the lowest LOD was associated with Pb2+ (0.19 ppb). The selectivity evaluation of the electrochemical sensor was performed by studying the effect of interferences majorly present in water sources (Mg2+, Ni2+, Zn2+, Al3+, and K+) on the SWV detection signals, and it was revealed that the interfering ions did not affect the simultaneous detection of the studied HMs (RSD less than 5%), the voltammetric sensors also presented excellent repeatability and reproducibility (RSD less than 5%).  相似文献   

5.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   

6.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   

7.
Zeng B  Ding X  Pan D  Zhao F 《Talanta》2003,59(3):501-507
Silver ions can be entrapped at the dl-dithiothreitol (HSCH2(CHOH)2CH2SH, DTT) self-assembled monolayer films modified gold electrodes. When the potential was made moving, an anodic peak was observed at about 0.23 V (vs. SCE). When the electrode Au/DTT was modified with dodecyl mercaptan further, more Ag (I) can be accumulated and the peak grows. Conditions, such as solution pH and supporting electrolyte, were optimized for Ag (I) determination. Under the selected conditions, i.e. 0.010 M pH 4.3 potassium hydrogen phthalate, preconcentration time of 5 min at open circuit, the anodic peak height is linear to the concentration of Ag (I) in the small range of 0.6-2.4 μM. The influence of some ions on the determination of Ag (I) was examined. The Br ion makes the peak decrease and NCS makes the peak increase. But the determination is not interfered by 1000-fold Pb2+, Cd2+, Hg2+, Fe3+, Ni2+, Co2+, Cu2+ and Sn2+ when EDTA was added into the solution. The mechanism involved was discussed.  相似文献   

8.
Zusammenfassung Die Trennung und Isolierung von folgenden Schwermetallen bei einem hohen Überschuß an Fremdionen mit Hilfe neuer selektiver Chelataustauscher wird beschrieben: Cu2+/Zn2+, Cu2+/Pb2+, Ag+/Cu2+, Ag+/Pb2+, Hg2+/Zn2+, Hg2+/Cd2+; Abtrennung von Hg2+. Unter gleichen Bedingungen war mit dem handelsüblichen Austauscher Dowex A-1 keine Trennung möglich.
Quantitative separation of heavy metals by means of chelating exchangers based on polystyrol
Summary The separation and isolation of the following heavy metals in presence of a high excess of foreign ions by means of new selective chelating exchangers is described: Cu2+/Zn2+, Cu2+/Pb2+, Ag+/Cu2+, Ag+/Pb2+, Hg2+/Zn2+, Hg2+/Cd2+; separation of Hg2+. Under the same conditions no separation could be achieved by the ion-exchanger Dowex A-1.
  相似文献   

9.
The use of a reactive electrode (reactrode) consisting of graphite, a solid ion exchanger (HYPHAN) and paraffin for the batch analysis of Cd2+, Cu2+, Pb2+ and Hg2+ in aqueous samples and as a passive monitor for these metal ions is described. The metal ions are accumulated on the reactrode surface at an open-circuit potential in an ion-exchange reaction. After the accumulation, the ion exchanger-bonded metal ions are reduced to the metals which remain on the electrode surface. In a following step, the metals are anodically dissolved which is recorded by differential-pulse voltammetry. The 3s detection limits for the analysis of drinking water are: 1.1×10-7 mol/l for Pb2+, 5×10-8 mol/l for Hg2+ and 2.4×10-7 mol/l for Cu2+.The reactrode developed can be used for the passive monitoring of heavy metals in aqueous streams if the reactrode is mounted in a wall-jet cell which is part of a flow-through system. Using this arrangement, it has been possible to determine Hg2+, Cu2+ and Pb2+ in drinking water after 20 hours of accumulation.  相似文献   

10.
《Analytical letters》2012,45(10):1746-1757
Bifunctional combination of carbon nanotubes and ionophore is introduced for anodic stripping analysis of lead (Pb2+). Carbon nanotubes are employed to improve the detection sensitivity due to their excellent electrical conductivity and strong adsorption ability. An ionophore is utilized for its excellent selectivity toward Pb2+. The proposed carbon nanotubes/ionophore modified electrode shows improved sensitivity and selectivity for Pb2+. Low detection limit (1 nM), wide linear range (5 nM–8 µM) and excellent selectivity over other metal ions (Cd2+, Cu2+, and Hg2+) was obtained. The practical application has been carried out for determination of Pb2+ in real water samples.  相似文献   

11.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

12.
An electrochemical method was developed for the determination of mercury using polycrystalline gold electrode modified by self-assembled monolayers (SAMs) of 2-mercaptobenzothiazole (MBTH). Morphological and electrochemical characterisation of the self-assembled structure of MBTH was performed using atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS) measurements. The monolayer of MBTH has shown high affinity for Hg2+. The limit of detection for the determination of Hg2+ using the MBTH SAMs modified gold electrode was obtained as 0.421 μg L?1. The pre-concentration of Hg2+ at open circuit potential is beneficial for the onsite monitoring of mercury concentration in water samples.  相似文献   

13.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

14.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

15.
A novel electrochemical biosensor with high sensitivity and selectivity for mercuric ion detection, based on DNA self-assembly electrode, is designed. Thiol functionalized poly-T oligonucleotides were used as gold electrode modifier through formation of Au–S bond between DNA and gold electrode. In presence of Hg2+ ions, the specific coordination between Hg2+ and thymine bases can change parallel ss-DNA from linear to hairpin structures, which can cause the release of partial DNA molecules from the surface of the electrode. The density of DNA on the surface of electrode correlated with the concentration of mercury in the solution and can be monitored by electrochemical impedance spectroscopy. The limit of detection of this method is pM level of mercuric ions which is far below the upper limit of Hg2+ mandated by United States Environmental Protection Agency (EPA), 2 ppb (10 nM). In addition, this method showed excellent selectivity. A series of divalent metal ions, including Ni2+, Co2+, Mg2+, Zn2+, Ba2+ and Cd2+, have little interference with the detection of Hg2+.  相似文献   

16.
ZnO nanoparticles (ZnO-NP) were prepared by a facile precipitation technique using di-isopropyl amine as precipitating agent. The morpho-structure and porosity of the as-prepared nano-powder were investigated by FT-IR analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET analysis. By drop-casting, a composite film was deposited to obtain ZnO-NP-Nafion/GCE modified electrode. The modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry (SWASV) for the detection of Pb2+, Cd2+, Cu2+, and Fe3+, and it was successfully applied for the detection of Pb2+ and Cu2+ in real water samples.  相似文献   

17.
A new method for the determination of nicotine alkaloid has been developed. This method is based on the quantitative precipitation of the alkaloid with metals such as Cu2+, Pb2+, Zn2+ and Hg2+. Then either the equivalent or residual metal is determined.The proposed method was successfully applied to the determination of nicotine in various types of tobaccos.  相似文献   

18.
Heavy metal ions such as Hg and Pb are hazardous due to very high toxicity, mobility, and ability to accumulate through the food chain or atmosphere in the environment system. Therefore, ultrasensitive determination of mercury and lead is important to provide an evaluation index of ions in aqueous environment. This paper describes the investigation of surface modified quantum dots (QDs) as a sensing receptor for Hg2+ and Pb2+ ion detection by optical approach. Water-soluble L-cysteine-capped CdS QDs have been synthesized in aqueous medium. These functionalized nanoparticles were used as a fluorescence sensor for Hg2+ and Pb2+ ions, involved in the fluorescence quenching. The effect of foreign ions on the intensity of CdS QDs showed a low interference response toward other metal ions except Cu2+ and Fe2+ ions. The limit of detection (LOD) of this system is found to be 1.0 and 3.0 nM for Hg2+ and Pb2+ ions, respectively.  相似文献   

19.
A glassy carbon electrode was modified with gold hierarchical dendrites (Au HDs) by one-step electrodeposition in the presence of cytosine, which plays an important role in the formation of the Au HDs. This approach is simple, fast, feasible, controllable, without any seed, template, or surfactant. The modified electrodes were used for the simultaneous determination of Pb2+ and Cu2+ by square wave stripping voltammetry. The peak currents show good linear relationship with concentrations of Pb2+ and Cu2+ in the range of 5.0 to 15.0 μM. The recoveries of the spiked water samples are in the range of 94.0 %–107.4 % for Pb2+ and Cu2+, and their relative standard deviation are in the range of 2.7 %–4.3 % for Pb2+ and Cu2+, respectively (n?=?3).
Figure
Well-defined Au hierarchical dendrites (HDs) modified electrodes were prepared by a simple, fast, feasible and controllable electrochemical route. The modified electrode was developed for the simultaneous and sensitive detection of Pb2+ and Cu2+ by square wave stripping voltammetry.  相似文献   

20.
A sensitive voltammetric method for detection of trace heavy metal ions using chemically modified carbon nanotubes (CNTs) electrode surfaces is described. The CNTs were covalently modified with cysteine prior to casting on electrode surfaces. Cysteine is an amino acid with high affinities towards some heavy metals. In this assay, heavy metals ions accumulated on the cysteine‐modified CNT electrode surfaces prior to being subjected to differential pulse anodic stripping voltammetry analysis. The resulting peak currents were linearly related to the concentrations of the metal ions. The method was optimized with respect to accumulation time, reduction time and reduction potential. The detection limits were found to be 1 ppb and 15 ppb for Pb2+ and Cu2+ respectively. The technique was used for the detection of Pb2+ and Cu2+ in spiked lake water. The average recoveries of Pb2+ and Cu2+ were 96.2% and 94.5% with relative standard deviations of 8.43% and 7.53% respectively. The potential for simultaneous detection of heavy metal ions by the modified CNTs was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号