首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Gong B  Li X  Wang F  Chang X 《Talanta》2000,52(2):217-223
A novel spherical macroporous epoxy-dicyandiamide chelating resin is synthesized simply and rapidly from epoxy resin and use for the preconcentration and separation of trace Ga(III), In(III), Bi(III), Sn(IV), Pb(II), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be quantitatively concentrated by the resin at flow rate of 3.0 ml min(-1) at pH 3, and can also be desorbed with 10 ml of 4 M HCl+0.2 g thiourea from the resin column with recoveries of 97-100%. The chelating resin is reused for eight times, the recoveries of these ions are still over 92%, and a 100-1000 times of excess of Fe(III), Al(III),Ca(II), Mg(III), Ni(II), Mn(II), Co(II), Cu(II), Zn(II), and Cd(II) cause no interference in the determination of these ions by inductively-coupled plasma atomic emission spectrometry. The capacities of the resin for the analytes are in the range of 0.66-4.20 mmol g(-1). The results show the relative standard deviation for the determination of 50.0 ng ml(-1) Ga(III), In(III), Bi(III), Sn(IV) and Pb(II), 5.0 ng ml(-1) V(V) and Ti(IV) are in the range of 1.2-4.0%. The recoveries of a standard added in real solution samples are between 96 and 100%, and the concentration of each ion in mineral sample detected by the method is in good agreement with the certified value.  相似文献   

2.
An ICP-OES method using a new poly-acrylacylisothiourea chelating fiber to preconcentrate and separate trace Ti(IV), V(V) and Bi(III) ions from solution samples is established. The results show that 5–25 ng/ml of Ti or V and 50–250 ng/ml of Bi ions in 200–1000 ml of solution can be enriched quantitatively by 0.05 g of the fiber at pH 3 with recoveries over 97%. These ions can be desorbed quantitatively with 10 ml of 4M HC1O4. 100- to 1000-fold excesses of Fe(III), Al(III), Ca(II), Mg(II), Cu(II), Ni(II) and Mn(II) ions cause little interference. The chelating fiber stored for about 2 years can still be used repeatedly for preconcentration and separation of trace Ti, V and Bi ions from solution with above 95% recovery. The RSDs for enrichment and determination of 5 ng/ml of Ti or V and 50 ng/ml of Bi are in the range 2.5–2.8%. The recoveries of added standard in real waste waters and mineral samples are between 96 and 100%, and the concentration found for each ion in the mineral sample was in good agreement with that measured by ETAAS.  相似文献   

3.
Chang X  Su Q  Liang D  Wei X  Wang B 《Talanta》2002,57(2):253-261
Poly(acryldinitrophenylamidrazone-dinitroacrylphenylhydrazine) chelating fiber was synthesized from polyacrylonitrile fiber and used for enrichment and separation for traces of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions from solution samples. The acidity, rate, re-use, capacity and interference on the adsorption of ions on the chelating fiber as well as the conditions of desorption of these ions from the chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry. The results show that 10-100 ngml(-1) of Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) ions can be quantitatively enriched by the chelating fiber at a 2 mlmin(-1) of flow rate in the range pH 4-5, and desorbed quantitatively with 20 ml of 5 M HCl for In(III), Bi(III), Zr(IV), V(V), Ga(III), Ti(IV) and 20 ml of 4 M HCl+2% CS(NH(2))(2) solution for Au(III), Ru(III) (with recovery>95%). 50- to 500- fold excesses of Fe(III), Al(III), Mg(II), Mn(II), Ca(II), Cu(II), Ni(II) ions cause little interference in the concentration and determination of analyzed ions. When the fiber was reused for 8 times, the recoveries of the above ions enriched by the fiber were still over 87%. The relative standard deviations (RSDs) for the enrichment and determination of 10 ngml(-1) Au, Ru, In, Bi, Ga and 1 ngml(-1) Zr, V, Ti were lower than 3.0%. The results obtained for these ions in real solution samples by this method were basically in agreement with the given values with average errors of less than 6.3%. FT-IR spectra show that existence of NNCNHNH, OCNHNH and NO(2) functional groups are verified in chelating fiber, and Au(III) or Ru(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelate complex.  相似文献   

4.
A new poly(epoxy-melamine) chelating resin is synthesized from epoxy resin and used for the preconcentration and separation of traces of Ru(III), Au(III), V(V) and Ti(IV) ions from sample solutions. The ions analyzed can be quantitatively enriched by the resin at a flow-rate of 2 mL/min at pH 4, and quantitatively desorbed with 10 mL of 1 mol/L HCl + 0.2 g CS(NH2)2 at a flow-rate of 1 mL/min with recoveries of over 97%. The chelating resin can be reused 7 times without obvious loss of efficiency. Thousand-fold excesses of coexistent ions caused little interference during the enrichment and determination steps. The RSDs for the determination of 50 ng/mL Ru(III) and Au(III), 5.0 ng/mL V(V) and Ti(IV) were in the range of 1.5–4.5%. The recoveries of added standards in a real sample solution are between 96% and 100%, and the results for the ions analyzed in a nickel alloy sample are in good agreement with their reported values.  相似文献   

5.
A new spherical macroporous epoxy-melamine chelating resin was synthesized simply and rapidly and used for the preconcentrating and separation of trace of Ga(III), In(III),Bi(III), Sn(IV)and Ti(IV) ions from sample solutions. The ions analyzed can be quantitatively enriched by the resin at a flow-rate of 2ml/min at pH4,and quantitatively desorbed with 10ml of 2mol/L HCl+0.2gCS(NH2)2 at a flow-rate of 1ml/min with recoveries of over 97%,The chelating resin can be reused 7times without obvious loss of efficiency.  相似文献   

6.
A new epoxy-tannin chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of rare elements. The acidity, rate, reuse, capacity and interference on the adsorption of ions on the resin as well as the conditions of desorption of these ions from the resin were investigated by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The composition of the resin and mechanism of enrichment for some ions were discussed. The results show that the relative standard deviations for the determination of 50 ng ml−1 Ga(III), In(III), Bi(III) and Sn(IV), 10 ng ml−1 La(III), Y(III), Cr(III), Ti(IV) and V(V) and 1.0 ng ml−1 Be(II) were in the range of 0.5–4.5%. The contents of these elements in a sample solution from a smelter determined by the new method were in agreement with those values obtained by Zeeman atomic absorption spectrometry with an average error <3.4%.  相似文献   

7.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

8.
Chang X  Su Z  Luo X  Zhan G 《Talanta》1993,40(4):527-532
A poly(acrylamidrazone-hydrazide) chelating fiber has been synthesized from polyacrylonitrile fiber and used for enrichment-separation of traces of In(III), Sn(IV), Cr(III), VO(I) and Ti(IV) from solution samples with satisfactory results. These ions (5-250 ng/ml) can be quantitatively enriched (recovery > 95%) by the fiber at a 10 ml/min flow rate in the pH range 4-7, and desorbed quantitatively (recovery > 95%) with 10 ml of 2-5M hydrochloric acid from a fiber column at 6 ml/min flow rate. When the fiber, which had been stored in a glass bottle for about two years and then treated with strong acids (concentrated hydrochloric or nitric acid), was reused 10 times, the recoveries of the above ions by enrichment were still over 94%, and hundred-fold to thousand-fold excesses of Cu(II), Zn(II), Co(II), Ca(II), Mg(II), Fe(III) and Al(III) caused little interference in the determination of these ions by ICP-AES. The lowest concentrations for the proposed method were 50 ng/ml and In and Sn and 5 ng/ml for Cr, V and Ti. The RSD was 1.2-4.0%. The contents of these ions in real solution samples determined by this method were basically in agreement with the certified values of the samples, with average errors below 3.3%. The IR spectra of the fiber adsorbed with Cr(III) or VO(I) showed that Cr(III) or VO(I) combined mainly with nitrogen atoms in the fiber to form a coordination complex.  相似文献   

9.
A new poly(epoxy-melamine) chelating resin is synthesized from epoxy resin and used for the preconcentration and separation of traces of Ru(III), Au(III), V(V) and Ti(IV) ions from sample solutions. The ions analyzed can be quantitatively enriched by the resin at a flow-rate of 2 mL/min at pH 4, and quantitatively desorbed with 10 mL of 1 mol/L HCl + 0.2 g CS(NH2)2 at a flow-rate of 1 mL/min with recoveries of over 97%. The chelating resin can be reused 7 times without obvious loss of efficiency. Thousand-fold excesses of coexistent ions caused little interference during the enrichment and determination steps. The RSDs for the determination of 50 ng/mL Ru(III) and Au(III), 5.0 ng/mL V(V) and Ti(IV) were in the range of 1.5–4.5%. The recoveries of added standards in a real sample solution are between 96% and 100%, and the results for the ions analyzed in a nickel alloy sample are in good agreement with their reported values. Received: 12 May 1997 / Revised: 1 September 1997 / Accepted: 9 October 1997  相似文献   

10.
 An ICP-OES method using a new poly (acrylphenylamidrazone-phenylhydrazide-acylphenylhydrazine) chelating fiber to preconcentrate and separate trace In(III), Zr(IV), Tl(I), V(V), Ga(III) and Ti(IV) ions from solution samples has been established. The new chelating fiber was synthesized using polyacrylonitrile fiber as a starting material and the structure of the chelating fiber was determined by FT infrared spectrometry. The acidity, adsorption rate, re-use, capacity and interference on the adsorption of ions on the chelating fiber as well as the conditions of desorption of these ions from the chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES). The results show that the relative standard deviations for the determination of 10 ng/ml In, Tl, Ga and 1 ng/ml Zr, V, Ti were lower than 2.5%. The results obtained for these ions in real solution samples by this method were basically in agreement with the given values with average errors of less than 4%. Received November 29, 2000. Revision May 22, 2001.  相似文献   

11.
A neutral polystyrene resin column, dynamically loaded with dipicolinic acid at a concentration of 0.1 mM in 1 M potassium nitrate eluent, was investigated for the separation characteristics of a number of high valence metal cations over the pH range 0-3. The metal species studied were Th(IV), U(VI), Zr(IV), Hf(IV), Ti(IV), Sn(IV), V(IV) and V(V), Fe(III) and Bi(III), of which Ti(IV), Sn(IV), V(IV) and Fe(III) did not show any retention. For the remaining metal ions, significant retention was obtained with good peak shapes, except for Th(IV), which moved only slightly from the solvent front with some tailing. The retention order at pH 0.3 was Th(IV) < V(V) < Bi(III) < U(VI) < Hf(IV) < Zr(IV). A notable feature of this separation system was the high selectivity shown for uranium, zirconium and hafnium, the last two being nearly resolved in 15 min on the relatively short 10 cm column.  相似文献   

12.
A new poly(acrylamidrazone-hydrazide lacmoid) chelating fibre has been synthesized from polyacrylonitrile fibre and used for the preconcentration and separation of traces of Cr(III), Ga(III), In(III) and Ti(IV) from solutions with satisfactory results. These ions can quantitatively be enriched by the chelating fibre at a flowrate of 6 ml/min at pH 6, and quantitatively desorbed with 10 ml of eluent at a rate of 4 ml/min. The chelating fibre reused ten times can still quantitatively concentrate traces of the above ions; twenty to two hundred-fold excesses of coexistent ions caused only little interference. With concentrations of 10 ng/ml Cr(III) and Ti(IV), and 50 ng/ml Ga(III) and In(III), the RSD was in the range of 1.4–4.6%. The contents determined in real samples were generally in agreement with the results obtained by HG-AAS; the recoveries of added standards were >96%.  相似文献   

13.
Summary A new chelating resin has been synthesized by modification of aminated macroporous poly(vinyl chloride) resin with pyrocatechol violet. The conditions for quantitative sorption of traces of Ti(IV), Zr(IV) and Ga(III) and quantitative elution of Ti(IV) and Zr(IV) are investigated. Accordingly, the collector can quantitatively adsorb traces of the above analytes at pH 2.0–6.0. Interferences of coexistent ions with traces of Ti(IV) and Zr(IV) can be neglected. After trace matrix separations by that collector, Ti and Zr determinations in real samples (e.g. steel, geochemical materials) can be performed with satisfactory results.  相似文献   

14.
Victor AH  Strelow FW 《Talanta》1981,28(4):207-214
Zinc and lead can be separated from Cd, Bi(III), In and V(V) by eluting these elements with 0.2M hydrochloric acid in 60% acetone from a column of AG50W-X8 cation-exchange resin, zinc and lead being retained. Mercury(II), Tl(III), As(III), Au(III), Sn(IV), Mo(VI), W(VI) and the platinum metals have not been investigated quantitatively, but from their distribution coefficients, should also be eluted. Vanadium(V), Mo(VI) and W(VI) require the presence of hydrogen peroxide. Zinc and lead can be eluted with 0.5M hydrochloric acid in 60% acetone or 0.5M hydrobromic acid in 65% acetone and determined by AAS; the alkali and alkaline-earth metal ions, Mn(II), Co, Ni, Cu(II), Fe(III), Al, Ga, Cr(III), Ti(IV), Zr, Hf, Th, Sc, Y, La and the lanthanides are retained on the column, except for a small fraction of copper eluted with zinc and lead. Separations are sharp and quantitative. The method has successfully been applied to determination of zinc and lead in three silicate rocks and a sediment.  相似文献   

15.
Preparation and use of a resin with 1.8-dihydroxynaphthalene-O,O-diacetic acid as chelating group are described. Besides the separation of many of the common interfering ions it also permits the separation of Hf. The following ions could be separated quantitatively: Mg(II), Pb(II), Cu(II), Fe(III), La(III), Ce(IV), Th(IV), Ti(IV), and U(VI). During these and further qualitative and quantitative experiments no interfering ions could be found. A method for the separation of95Zr from its daughter nuclide95Nb is also described. The main problem proved to be the separation of Zr(IV) and Hf(IV), owing to their close resemblance. To accomplish quantitative determination of Zr and Hf without any separation,95Zr and175+181Hf radioisotopes were used. The chelating resin permits the separation of 95% of Hf(IV) from an equimolar solution. The main part of Hf(IV) is eluated by 2M hydrochloric acid, and subsequently Zr(IV) by 0.75M oxalic acid. The rest of Hf is enriched in the first fractions of the oxalic acid eluate, so that when eliminating these, even after a single step experiment hafnium free from zirconium and a rather pure fraction of zirconium are obtained. Even under extreme conditions of concentration (Zr∶Hf=91∶1) 75% of Hf can be separated free from Zr in a single step experiment.

Vorgetragen auf der IUPAC-Tagung in Prag, 1967.  相似文献   

16.
A new polystyrene-divinylbenzene resin containing 1-(2-thiazolylazo)-2-naphthol (TAN) functional group was synthesized and its sorption behavior for 19 metal ions including Zr(IV), Hf(IV) and U(VI) was investigated by batch and column experiments. The chelating resin showed a high sorption affinity for Zr(IV) and Hf(IV) at pH 2. Some parameters affecting the sorption of the metal ions are detailed. The breakthrough and overall capacities were measured under optimized conditions. The overall capacities of Zr(IV) and Hf(IV) that were higher than those of the other metal ions were 0.92 and 0.87 mmol/g, respectively. The elution order of metal ions at pH 4 was evaluated as: Zr(IV)>Hf(IV)>Th(IV)>V(V)>Nb(V)>Cu(II)>U(VI)>Ta(V)>Mo(VI)>Cr(III)>Sn(IV)>W(VI). Quantitative recovery of most metal ions except Zr(IV) was achieved using 2 M HNO3. Desorption and recovery of Zr(IV) was successfully performed with 2 M HClO4 and 2 M HCl.  相似文献   

17.
Summary A chelating polystyrene based resin containing N-benzoyl-N-phenylhydroxylamine has been sythesized by two methods and characterized. Conditions for quantitative separation of Ti(IV), Fe(III) and Al(III) on the resin have been studied. A method has been developed for the determination of these three metal ions in bauxite or clay samples after their separation on the resin with recoveries of 98.5–99.5% for different metal ions. The maximum sorption values are observed at pH 1, 2.5 and 2.5 for Ti(IV), Fe(III) and Al(III), respectively, which are recovered by successive elution with 1 mol/l H2SO4, 2 mol/l HCl and 4 mol/l H2SO4 in the above order.  相似文献   

18.
Nan Z  Yuan-Xiang G  Zhi-Ren L  Eei-Yong C 《Talanta》1985,32(12):1119-1124
A rapid chelatometric method for the determination of Al (4–20%) in magnesium, copper and chromium-aluminium-iron alloys is proposed. HEDTA is used as titrant and Zn solution as back-titrant, with hydrazidazol as indicator. Mn(II), Cu(II), Cd, Zn, Pb, Co(II), Ni, Hg(II), Fe(III), Bi, Cr(III), Sb(III), Ce(III), La, Sn(IV), Ti(IV), Zr and Mo(VI) do not interfere. High selectivity is achieved by a combination of group separation, masking and interference correction. The coefficient of variation varies from 0.2 to 1%.  相似文献   

19.
Vanadium(III) obtained by dithionite reduction of vanadium(V) can be extracted as its ferron complex with tribenzylamine in chloroform from 0.05 M sulphuric acid. Vanadium (0–5 μg ml-1) is determined spectrophotometrically at 430 nm with a sensitivity of 0.0028 μg V cm-2. Al(III), Co(II), Ni(II), Fe(II, III), Hg(II), Si(IV), Be(II), Mg(II), Ca(II), Sr(II), Ba(II), Cr(VI, III), W(VI), Zn(II), U(VI), Mn(II). Pb(II), Cu(II), Cd(II) and Th(IV) do not interfere; only Mo(VI), Ti(IV), Zr(IV). Bi(V) and Sn(II) interfere. A single determination takes only 7 min. The extracted complex is VIII (R-3H.TBA)3 where R = C9H4O4NSI. The method is satisfactory for the determination of vanadium in steels, alum and other samples without preliminary separations.  相似文献   

20.
Tin (II) forms a yellow complex with potassium ethylxanthate which can be extracted into chloroform. Tin is determined spectrophotometrically by measuring the absorbance at 360 nm. Beer's law is obeyed up to 120 g of Sn in the aqueous phase with a Sandell sensitivity of 0.013 g Sn/cm2. Metal ions such as Ti(IV), Cr(VI), Mn(II), Cu(II), Zn(II), Al(III), U(VI), W(VI), Th(IV) and Zr(IV) do not interfere, but Mo(VI), Co(II) and Bi(III) do. Interference due to Fe(II, III), Ni(II) and V(V) is checked by suitable masking agents. Analysis of some synthetic and industrial samples has been carried out by the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号