首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The optimal concentrations of nutrient medium components, aeration conditions, and pH providing for maximum biomass yields, as well as fumarase and l-aspartase activities, during submerged cultivation of Erwinia sp. were determined. The data showed that different concentrations of carbon source (molasses) and pH of the nutrient medium were required to reach the maximum fumarase and l-aspartase activities. Calculations performed by application of the additive lattice model suggested that the combination of these optimized factors would result in 3.2-, 3.4-, and 3.8-fold increases as compared to the experimental means in Erwinia sp. biomass, and l-aspartase and fumarase activities, respectively. The conditions of the fumaric acid biotransformations into l-malic and l-aspartic acids were optimized on the basis of intact Erwinia sp. cells, a fumarase and l-aspartase producer. In the cases of fumarate transformation into l-malic acid and of fumarate transformation into l-aspartic acids, fumarase and l-aspartase activities increased 1.5- and 1.7-fold, respectively. The experimental data were consistent with these estimates to 80% accuracy. In comparison with the additive lattice model, the application of polynomial nonlinear model allowed the between-factor relations to be considered and analyzed, which resulted in 1.1-, 1.27-, and 1.1-fold increases in Erwinia sp. biomass and fumarase and l-aspartase activities for the case of cultivation. In the case of fumarate transformation into l-malic acid, this model demonstrated a 1.7-fold increase in fumarase activity, whereas during fumarate transformation into l-aspartic acid no significant change in aspartase activity was observed.  相似文献   

2.
Whole cells ofBrevibacterium flavum having fumarase activity were immobilized using K-carrageenan. The stabilities of fumarase activity in the immobilized cells against external factors, including heat, pH, organic solvents, and protein denaturing reagents, were compared with those of free cells and native enzyme. The stabilities of fumarase activity in immobillized cells against external factors were highest, and those of native enzyme were lowest. In the “gel-state,” K-carrageenan-immobilized cells showed a much higher stabilization effect for external factors than “sol-state” immobilized cells.  相似文献   

3.
Whole cells ofBrevibacterium flavum having high fumarase activity were immobilized using K-carrageenan. The reason for the high stability of fumarase activity of immobilized cells was investigated. One of main reasons for stabilizing fumarase activity by immobilization using K-carrageenan against organic solvents such as ethanol and acetone was the lower concentration of these solvents in the carrageenan gel compared with that in outer bulk solution. The stabilization of fumarase activity in the immobilized cells against protein-denaturing reagents was found to be related to rheological properties of K-carrageenan gel. Another reason for stabilizing fumarase activity by immobilization with K-carrageenan was to protect the cells from lysis. When immobilized cells were freeze-thawed, their fumarase activity increased and operation stability decreased. Therefore, one reason for the high decay of fumarase activity caused by the freeze-thawing may be a change in the pore size of the K-carrageenan gel. Fumarase activity and the operational stability of immobilized cells was found to depend on gelling conditions. Therefore, the steric structure of the K-carrageenan gel may be related to the decay of fumarase activity.  相似文献   

4.
Microsomes from pig liver were covalently coupled to Sepharose activated by CNBr and to Sephadex activated by 1,1’-carbonyldiimidazole. Microsomes were also entrapped inside Ca-alginate andk-carrageenan gels. The concentration of immobilized cytochrome P-450 was determined by CO-difference spectra. The activity of the monooxygenase system was demonstrated by theN-demethylation of aminopyrine, theO-demethylation ofp-nitroanisole, and the hydroxylation of perhexiline maleate. Upon immobilization, a 30–40% and a 60–70% decrease in V max app for theOandN-demethylations were respectively observed. The V max app values for the hydroxylation of perhexiline maleate were essentially the same for the different immobilized forms and for the freely suspended microsomal cytochrome P-450. Under storage at 4°C, microsomes entrapped insidek-carrageenan and Ca-alginate were less stable than the free microsomes, whereas immobilization on CNBr-activated Sepharose improved the stability of the hepatic microsomal monooxygenase system at the same temperature. These types of immobilized microsomes have the advantage of being easily recovered and reused for other assays. Finally, microsomes entrapped insidek-carrageenan or Ca-alginate can be used to follow up the continuous metabolization ofp-nitroanisole for several hours in a stirred-batch reactor.  相似文献   

5.
For continuous production of cephalexin, whole cells ofXanthomonas citri were immobilized by entrapment in polyacrylamide gel and kappa-carrageenan gel. It wasfound that cells immobilized with kappa-carrageenan showed better thermal stability compared to those immobilized by polyacrylamide gel. The cells immobilized with kappa-carrageenan were treated with glutaraldehyde and hexamethylenediamine to prevent gel destruction during prolonged operation. By immobilizing intact cells, the optimal temperature for the synthetic enzyme reaction shifted higher by 8°C and the optimal pH became broader around 6.2 In continuous operation, the immobilized cells retained better operational stability at 25 than at 37°C, and also showed maximal conversion up to 83% at 25°C.  相似文献   

6.
Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca2+-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a “ trickle-bed ” reactor.  相似文献   

7.
In this study, the immobilization characteristics of Enterococcus faecalis RKY1 for succinate production were examined. At first, three natural polymers—agar, κ-carrageenan, and sodium alginate—were tried as immobilizing matrices. Among these, sodium alginate was selected as the best gel for immobilization of E. faecalis RKY1. Efficient conditions for immobilization were established to be with a 2% (w/v) sodium alginate solution and 2-mm-diameter bead. The bioconversion characteristics of the immobilized cellsat various pH values and temperatures were examined and compared with those of free cells. The optimum pH and temperature of the immobilized cells were the same as for free cells, 7.0 and 38°C respectively, but the conversion ratio was higher by immobilization for all the other pH and temperature conditions tested. When the seed volume of the immobilized cells was adjusted to 10% (v/v), 30 g/L of fumarate was completely converted tosuccinate (0.973 g/g conversion ratio) after 12 h. In addition, the immobilized cells maintained a conversion ratio of >0.95 g/g during 4wk of storageat 4°C in a 2% (w/v) CaCl2 solution. In repetitive bioconversion experiments, the activity of the immobilized cells decreased linearly according to the number of times of reuse.  相似文献   

8.
Aspartase was extracted from E. coli cells by autolysis in the presence of the substrate. The enzyme could be conveniently immobilized to a weakly basic anion exchange resin Duolite A7 by adsorption. Enzymatic properties of the immobilized aspartase were found to be fit for industrial purposes. Consequently,l-aspartic acid has been industrially produced by this immobilized-enzyme process since 1974.  相似文献   

9.
Monoalkylation of amino acids of different structural types withN-chloroacetyl-glycosylamines was shown to be applicable for the preparation of glycoconjugates containing β-d-galactose,N-acetyl-β-d-glucosamine, β-d-mannose, and lactose residues. The glycoconjugates were synthesized from amino acids with secondary (sarcosine,l-proline) or primary (l-2- and 4-aminobutyric acids,l-tryptophan) amino groups as well as from various amino dicarboxylic acids (N-methyl-dl-aspartic,dl-aspartic,l-glutamic, anddl-2-aminoadipic acids). The derivatives obtained may be of interest for glycotargeting of physiologically active compounds of this series. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1377–1380, July, 1999.  相似文献   

10.
Escherichia coli NCIM 2569 was evaluated for its potential for amidase production under submerged fermentation. Among the various amide compounds screened, maximum substrate specificity and enzyme yield (8.1 U/mL) were obtained by using 1% acetamide. Fermentation was carried out at 30°C in shake-flask culture under optimized process conditions. A maximum of 0.52 U/mL of intracellular amidase activity was also obtained from cells incubated for 24 h. Studies were also performed to elucidate the optimal conditions (gel concentration, initial biomass, curing period of beads, and calcium ion concentration in the production medium) for immobilization of whole cells. By using E. coli cells entrapped in alginate, a maximum of 6.2 U/mL of enzyme activity was obtained after 12 h of incubation under optimized conditions. Using the immobilized cells, three repeated batches were carried out successfully, and 85% of the initial enzyme activity was retained in the second and third batches. The study indicated that the immobilized E. coli cells offered certain advantages such as less time for maximum enzyme production, more stability in the enzyme production rate, and repeated use of the biocatalyst.  相似文献   

11.
Spores ofClostridium acetobutylicum were immobilized in calcium alginate. An active gel preparation was obtained after outgrowth of the spores to vegetative cells within the gel matrix. A 100 mL column containing the immobilized cells was used for continuous production. At steady-state conditions the productivity of butanol was 67 g/L reactor volume/day.  相似文献   

12.
myo-Inositol-1-phosphate synthase (EC 5.5.1.4) from rat testes, an NAD+-containing enzyme, which convertsd-glucose 6-phosphate to 1l-myo-inositol 1-phosphate, could be immobilized together with its cofactor and bovine serum albumin by crosslinking with glutaraldehyde at pH 4.5. The enzyme bound to the gel showed a specific activity of 5.6% of that of the native enzyme, but the activity could be increased to 21% by pretreatment with urea.  相似文献   

13.
l-Glutamine amidohydrolase (l-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on l-glutaminase. In this article, we report the continuous production of extracellular l-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for l-glutaminase production were incorporated into the continuous production studies. Beads with 12×108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of l-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilized spores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of l-glutaminase.  相似文献   

14.
An acetylene utilizingGordona (Rhodococcus) bronchialis strain, screened for the production of fine chemicals, was found to be capable of producing small amounts of lysine. Attempts to produce amino-acid analogresistant and/or sensitive mutants and auxotrophs of this strain with increased lysine production were made following UV-irradiation orN-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treatment. The bacterium exhibited surprisingly high resistance levels to the aforementioned mutagens which is attributed to highly effective inborn-repair systems. Natural resistance to high levels ofS-(2-aminoethyl)-l-cysteine (AEC) (2%) was observed, in contrast withd, l-aspartic acid hydroxamate (AAH),l-lysine hydroxamate (LHX) and β-fluoropyruvate (FP). A variety of amino-acid analog-resistant (AAHr, LHXr) or analog-sensitive (FPs) mutants were produced following UV-irradiation or MNNG treatment. Similarly, a large number of auxotrophs (68) of different types were also obtained. From these, one FPs mono-auxotroph and two poly-auxotrophs (with at least one requirement for the aspartic acid family) showed an increased lysine production (~1.8 g/L) comparable (4 g/L) to that found in other bacteria capable of utilizing long-chain hydrocarbons(1).  相似文献   

15.
A rapid and convenient assay system was developed to detect viable Escherichia coli in water. The target bacteria were recovered from solution by immunomagnetic separation and incubated in tryptic soy broth with isopropyl-β-d-thiogalactopyranoside, which induces formation of β-galactosidase in viable bacteria. Lysozyme was used to lyse E. coli cells and release the β-galactosidase. β-Galactosidase converted 4-methylumbelliferyl-β-d-galactoside to 4-methylumbelliferone (4-MU), which was measured by fluorescence spectrophotometry using excitation and emission wavelengths of 355 and 460 nm, respectively. Calibration graphs of 4-MU fluorescence intensity versus E. coli concentration showed a detection range between 8 × 104 and 1.6 × 107 cfu mL−1, with a total analysis time of less than 3 h. The advantage of this method is that it detects viable cells because it is based on the activity of the enzyme intrinsic to live E. coli.  相似文献   

16.
A new method has been developed to rapidly generate and select microbial strains having increased resistance to an inhibitory compound. The method combinesin situ mutagenesis with use of a continuous gradient of the inhibitor to sort cells according to their resistance levels. Microbial chemotaxis is induced to accelerate the selection process. The method was used to develop a strain ofE. coli having a feedback-resistant DAHP synthase enzyme. An unsteady-state mathematical model of the process has been developed. The model, that can reproduce key trends observed experimentally, was used to explore the effects of chemotaxis on the efficiency of the selection process.  相似文献   

17.
Functional expression of a β-d-1,4 glucanase-encoding gene (egl1) from a filamentous fungus was achieved in both Escherichia coli and Saccharomyces cerevisiae using a modified version of pRS413. Optimal activity of the E. coli-expressed enzyme was found at incubation temperatures of 60°C, whereas the enzyme activity was optimal at 40°C when expressed by S. cerevisiae. Enzyme activity at different pH levels was similar for both bacteria and yeast, being highest at 5.0. Yeast expression resulted in a highly glycosylated protein of approx 60 kDa, compared to bacterial expression, which resulted in a protein of 30 kDa. The hyperglycosylated protein had reduced enzyme activity, indicating that E. coli is a preferred vehicle for production scale-up.  相似文献   

18.
A convenient preparative procedure was developed for the synthesis ofN-glycyl-β-glycopyranosylamines, derivatives of monosaccharides (d-galactose,d-mannose,l-fucose, andN-acetyl-d-glucosamine) and disaccharides (lactose, melibiose, cellobiose, and maltose). These compounds were demonstrated to be useful for the preparation of glycoconjugates of biologically active compounds containing the carboxy group (nicotinic, orotic, kynurenic, and indoleacetic acids). Synthetic pathways were developed for conversions ofN-glycyl-β-glycopyranosylamines into derivatives containing the carboxy group with the use of malonic andl-tartaric acid derivatives. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1461–1466, August, 2000.  相似文献   

19.
The use of immobilized enzymes has opened the possibility of large scale utilization of NAD+-linked dehydrogenases, but the applications of this technique were limited by the necessity of providing the large amounts of NAD+ required by its stoichiometric consumption in the reaction. After immobilization of alcohol dehydrogenase and intactE. coli by glutaraldehyde in the presence of serum albumin, the respiratory chain was found to be capable of regenerating NAD+ from NADH. This NAD+ can be recycled at least 100 times, and thus the method is far more effective than any other, and, moreover, does not require NADH oxydase purification. The total NADH oxidase activity recovered was 10–30% of the initial activity. Although, NADH is unable to cross the cytoplasmic membrane, it was able to reach the active site of NADH dehydrogenase after immobilization. The best yield of NADH oxidase activity with immobilized bacteria was obtained without prior treatment of the bacteria to render them more permeable. The denaturation by heat of NADH oxidase in cells that are permeabilized was similar before and after immobilization. In contrast, the heat denaturation of soluble Β-galactosidase required either a higher temperature or a longer exposure after immobilization. The sensitivity of immobilized NADH oxidase to denaturation by methanol was decreased compared to permeabilized cells. As a result, it is clear that the system can function in the presence of methanol, which is necessary as a solvent for certain water insoluble substrates.  相似文献   

20.
A strain with high poly-γ-glutamic acid (γ-PGA) production was isolated from fermented bean curd, a traditional Chinese food. The strain was named Bacillus subtilis ZJU-7 according to 16s rDNA sequencing and its taxonomic characters. The culture conditions for γ-PGA production were evaluated. The most suitable carbon and nitrogen sources were sucrose and tryptone, respectively. Exogenous l-glutamic acid was necessary for γ-PGA production, and the production of γ-PGA increased on the addition of l-glutamic acid to the medium. In the medium containing 60 g/L of sucrose, 60 g/L of tryptone, 80 g/L of l-glutamic acid, and 10 g/L of NaCl, the yield of γ-PGA reached 54.4 g/L after cultivation at 37°C for 24h, which was the highest γ-PGA production compared with values reported in the literature. The average molecular mass of γ-PGA produced was about 1.24×106 Daltons. B. subtilis ZJU-7 is genetically stable and can synthesize levan instead of γ-PGA without the addition of l-glutamic acid to the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号