首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moloughney PE 《Talanta》1980,27(4):365-367
A method is presented for the determination of palladium, platinum, gold and silver in ores and concentrates by a fire-assay and wet chemical technique. After parting of the lead assay button with dilute nitric acid, and separation of the solution from the residue, the palladium and platinum in the solution are precipitated by the addition of stannous chloride, with tellurium as collector. The resulting precipitate is combined with the gold residue and dissolved in aqua regia, then the solution is analysed for palladium, platinum and gold by atomic-absorption spectrophotometry (AAS). Silver is determined in the original solution by AAS before the reduction step.  相似文献   

2.
In presence of tin(II) bromide, noble metals give coloured products which are suitable for spcctrophotometric determinations. The colours are red (platinum), yellow-orange (rhodium), yellow-brown (palladium), yellow (iridium) and violet (gold) They are extracted, except for gold, with isoamyl alcohol Platinum, rhodium and palladium can be separated from irdium, and rhodium and platinum from palladium. Rhodium and platinum can be determined simultaneously.  相似文献   

3.
Weinert CH  Strelow FW 《Talanta》1983,30(10):755-760
Ion-exchange distribution coefficients and elution curves are presented for copper(I), silver, gold(I), palladium, platinum(II), rhodium(III), iridium(III), ruthenium(III), osmium(III), mercury(II), thallium(I), tellurium(II), lead and bismuth in mixtures of thiourea, hydrobromic acid, acetone and water, with the cation-exchange resin AGW50W-X4. The system affords excellent separations of rhodium, mercury, silver (or copper), tellurium, gold, and palladium (or platinum) from each other.  相似文献   

4.
Beamish FE 《Talanta》1966,13(8):1053-1068
Titrimetric methods for palladium, platinum, rhodium, iridium, ruthenium and gold are critically reviewed to the end of 1964. Previous reviews covered the literature to the end of 1957 for the five platinum metals and to mid-1960 for gold.  相似文献   

5.
A systematic study has been made on the reducing power of amalgamated copper powder in hydrochloric acid solution for palladium, platinum, rhodium, iridium, gold and silver. In order to apply this method to the activation analysis of palladium, platinum and rhodium in industrial concentrates which contain a large amount of ‘base elements’, the behaviour of palladium, platinum and rhodium in the presence of the ‘base elements’ has also to be considered. Research associate of I.I.K.W., Belgium  相似文献   

6.
7.
This review describes the state of the art in the field of polyoxometalates containing noble metal atoms (ruthenium, rhodium, palladium, silver, osmium, iridium, platinum and gold). The structures of the various species are listed together with their applications (mainly in catalysis).  相似文献   

8.
Summary Gravimetric methods have been applied for the determination of silver, gold, platinum, palladium, ruthenium and rhodium, by means of the reduction of these metals with sodium 1-phenyl-2,3-dimethyl-5-pyrazolonemethylaminomethane sulphonate (noramidopyrine, NAP). Statistical analysis of the determination results showed that a high precision of the determination could be achieved by means of these methods.  相似文献   

9.
The six platinum group metals (pgms: ruthenium, rhodium, palladium, osmium, iridium and platinum) posed a number of problems for 19th-century chemists, including Mendeleev, for their Periodic classification. This account discusses the discovery of the pgms, the determination of their atomic weights and their classification.  相似文献   

10.
Kallmann S  Hobart EW 《Talanta》1970,17(9):845-850
A method is described which combines the best features of the fire-assay procedure with an atomic-absorption technique. The precious-metal bead resulting from the fire-assay concentration step is dissolved in acids, the solution evaporated to dryness and the residue dissolved in b measured quantity of cyanide solution. The atomicabsorption measurement of this solution allows the determination of as little as 0.017 ppm of silver, 0.08 ppm of gold, and/or 0.08 ppm of palladium in various precious-metat-bearing materials with a precision of +/- 1%.  相似文献   

11.
The state of rhodium, iridium, platinum, and gold in HCl, HClO4, H2SO4, and HNO3 solutions was studied by capillary electrophoresis. The electrophoresis was performed in an acidic phosphate buffer solution using an unmodified fused-silica capillary. It was found that the catalytic activity of the metals in the reaction of N-methyldiphenylamine-4-sulfonic acid oxidation with periodates in weakly acidic solutions depends on the analyte speciation. It was found that rhodium and iridium cations formed upon the treatment of a sample with concentrated perchloric acid catalyze the above reaction; this is favorable for the selective determination of these cations in the presence of platinum and gold.  相似文献   

12.
A new scheme is proposed for the separation of platinum, palladium, rhodium and iridium in hydrochloric acid solutions, by solvent extraction. Platinum and palladium are complexed with 2-mercaptobenzothiazole and potassium iodide and simultaneously extracted into chloroform, thus separating them from rhodium and iridium. Palladium is separated from platinum by extracting its dimethylglyoxime complex into chloroform, while rhodium is separated from iridium by extracting its 2-mercaptobenzothiazole complex into chloroform after reduction with tin(II) chloride.  相似文献   

13.
Colloidal dispersions of noble metals in synthetic polymers are prepared by reduction with alcohol. Reflux of a solution of rhodium(III) chloride and poly(vinyl alcohol) (PVA) in a methanol-water mixed solvent under argon or air for 4 hr gives a homogeneous solution of colloidal dispersion of rhodium (Rh-PVA-MeOH/H2O). The particle size of metallic rhodium is distributed n a narrow range of 30-70 Å, and the average diameter is 40 A. The formation of colloidal rhodium proceeds through three steps: coordination of poly(vinyl alcohol) to rhodium(III) ion, reduction with methanol to form small particles (8 Å in diameter), and growth of the small particle to large particle (40 Å in diameter). Polyvinylpyrrolidone (PVP) and poly(methyl vinyl ether) (PMVE) can be used in place of poly(vinyl alcohol) and result in colloidal dispersions, respectively, similar to Rh-PVA-MeOH/H2O. Colloidal dispersions in nonaqueous solvent can be prepared by using ethanol instead of methanol-water (Rh-PVP-EtOH) and by using methanol instead of methanol-water, with addition of small amount of methanol solution of sodium hydroxide (Rh-PVP-MeOH/NaOH). The average diameters of rhodium particles in Rh-PVP-EtOH and Rh-PVP-MeOH/NaOH are 22 and 9 Å, respectively. The colloidal dispersions of palladium, silver, osmium, iridium, platinum, and gold in aqueous or nonaqueous solvent are prepared by using polyvinylpyrrolidone. The colloidal dispersions are very stable even under air for 20 days. Those of rhodium, palladium, and platinum are effective catalysts for hydrogenation of olefins at 30°C under an atmospheric hydrogen pressure. The colloidal dispersion of palladium catalyzes highly selective hydrogenation of diene and dienoate to monoene and monoenoate, respectively.  相似文献   

14.
The determination of palladium, platinum and gold in copper metal by neutron activation analysis is described. The matrix activity was separated from the noble metals by cation-exchange adsorption. Gold was extracted; palladium and platinum were precipitated. The precipitates were counted with a low-energy photon detector. The gold results were checked by instrumental neutron activation analysis. Silver, iridium, selenium, antimony and arsenic were also determined simultaneously.  相似文献   

15.
Distribution coefficients were determined for the partitioning of the chloro-complexes of platinum, palladium, rhodium, and iridium between tributyl phosphate and various concentrations of hydrochloriic acid. Theoretical calculations based on the experimentally determined distribution coefficients indicated that a seventeen stage countercurrent extraction apparatus would resolve mixtures of platinum and palladium, platinum and rhodium, and rhodium and iridium.Mixtures of platinum and palladium, and platinum and rhodium were resolved in a fashion predicted by theory. Mixtures of rhodium and iridium were not completely resolved.  相似文献   

16.
The chemisorption of dimethylphenyl-, methyldiphenyl- and triphenylphosphine on evaporated gold, silver, copper, rhodium, iridium, palladium, platinum and nickel surfaces has been studied by means of infrared reflection–absorption spectroscopy (IRAS). Multilayers of physisorbed phosphine are formed on the surfaces of all metals studied except nickel after deposition from dilute toluene solution. The deposition rate varies for different metal surfaces and it is sometimes quite slow. The standard immersion time was 20 h in this study to secure that an equilibrium between the surface and the solution is reached. Several minutes of ultrasonic treatment are required to get rid of the physisorbed phosphine, leaving a very thin layer of chemisorbed phosphine on the metal surface. Most of the absorption bands in IRAS spectra of these thin layers show significant shifts, which are especially large for dimethylphenylphosphine. It is evident that the electron distribution in the entire phosphine molecules is changed and that the chemisorption to the coinage and platinum group metal surfaces is strong. Infrared spectra of coordination compounds of gold(I), silver(I) and copper(I) with dimethylphenyl-, methyldiphenyl- and triphenylphosphine and of the corresponding phosphine oxides have served as reference material for the chemisorbed phosphines. The spectra of the coordination compounds show similar shifts and intensity changes as the IRAS spectra of tertiary phosphines chemisorbed on the coinage and platinum group metals. This suggests that the studied phosphines are as strongly bound to the coinage and platinum group metal surfaces as to the monovalent coinage metal ions known to form very stable complexes with tertiary phosphines.  相似文献   

17.
In this paper, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A new method for the simultaneous determination of palladium, platinum, rhodium and gold ions as metal-HNATR chelates was developed using a rapid analysis column high performance liquid chromatography equipped with on-line solid phase extraction technique. The samples (Water, human urine, geological samples and soil) were digested by microwave acid-digestion. The palladium, platinum, rhodium and gold ions in the digested samples were pre-column derivatized with HNATR to form colored chelates. The Pd-HNATR, Pt-HNATR, Rh-HNATR and Au-HNATR chelates can be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] with a buffer solution of 0.05 mol L(-1) phosphoric acid as mobile phase. After the enrichment had finished, by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and travelling towards the analytical column. These chelates separation on the analytical column [Zorbax Stable Bound, 10 mm x 4.6 mm, 1.8 microm] was satisfactory with 72% acetonitrile (containing 0.05 mol L(-1) of phosphoric acid and 0.1% of Triton X-100) as mobile phase. The palladium, platinum, rhodium and gold chelates were separated completely within 2.5 min. Compared to the routine chromatographic method, more then 80% of separation time was shortened. By on-line solid phase extraction system, a large volume of sample (10 mL) can be injected, and the sensitivity of the method was greatly improved. The detection limits (S/N=3, the sample injection volume is 10 mL) of palladium, platinum, rhodium and gold in the original samples reaches 1.4, 1.8, 2.0 and 1.2 ng L(-1), respectively. The relative standard deviations for five replicate samples were 2.4-3.6%. The standard recoveries were 88-95%. This method was applied to the determination of palladium, platinum, rhodium and gold in human urine, water and geological samples with good results.  相似文献   

18.
Microgram amounts of the 6 platinum-group metals in 5 stony and 3 iron meteorites were determined spectrophotometrically after perchloric acid decomposition and ion-exchange separation. The accuracy of the determinations of osmium, ruthenium and platinum was improved by the use of more sensitive procedures; arsenazo III was used for the determination of palladium in presence of platinum, rhodium and iridium. The data for platinum-group metals thus obtained are compared with published data obtained by neutron activation and spectrographic methods for the same meteorites or for other meteorites of the same class. With a few exceptions, the agreement between the new data and published data is satisfactory.  相似文献   

19.
Colloidal dispersions of rhodium, palladium, osmium, iridium, and platinum are prepared by refluxing the methanol-water solutions of rhodium(III) chloride, palladium(II) chloride, osmium(VIII) oxide, sodium chloroiridate, and chloroplatinic acid, respectively, in the presence of poly(vinyl alcohol) as a protective colloid. The preparations of colloidal dispersions of rhodium are successful in the presence of vinyl polymer with polar group such as poly(vinyl alcohol), polyvinylpyrrolidone, or poly(methyl vinyl ether). Polyethyleneimine, gelatin, polyethylene glycol), and dextran are ineffective as the protective colloid. Water-soluble primary alcohols such as methanol and ethanol, water-soluble secondary alcohols such as 2-propanol, and water-soluble diethers such as 1,4-dioxane are available as reductants for preparation of the colloidal dispersion of rhodium. The average diameters of metal particles in the colloidal dispersions of palladium, rhodium, platinum, iridium, and osmium in poly(vinyl alcohol) are determined by electron microscopy to be 53, 40, 27, 14, and < 10 Å, respectively. The particle size distribution in each colloidal dispersion is sharp within 50 Å wide. The particles in the colloidal dispersions of both iridium and osmium are highly dispersed with no aggregation, while in the colloidal dispersions of rhodium, palladium, and platinum, there exist aggregates of 5-15, 5-30, and 100-200 particles, respectively. Colloidal dispersions of rhodium, palladium, osmium, and platinum are effective as catalysts for hydrogenation of cyclohexene at 30.0°C under atmospheric hydrogen pressure.  相似文献   

20.
The proposed method provides a rapid isolation of iridium form the other noble metals, as well as from Ni, Cu, Fe, Cr, Co and Na. The scheme comprises an initial removal of ruthenium and osmium by volatilization of their tetroxides followed by the simultaneous extraction of platinum, palladium, rhodium and gold as their 2-mercaptobenzothiazole—tin(II) chloride complexes into chloroform. Iridium in the raffinate is complexed by the same reagent system, after boiling, and extracted into chloroform. The extracts after evaporation of the solvent are converted to hydrochloric acid solutions and the noble metals are determined by atomic absorption spectrometry. Satisfactory results are obtained for various noble metal solutions, and for a solid platiniferous sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号