首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The electrogenerated chemiluminescence (ECL) behavior of lucigenin in ethanol solution at a polycrystalline gold electrode was studied under conventional cyclic voltammetric conditions. Compared with the ECL of lucigenin in aqueous solution, one cathodic ECL peak (ECL‐1 at ?0.98 V versus SCE) with a shoulder (S1 at ?0.42 V) and three new anodic ECL peaks (ECL‐2 at ?0.53 V, ECL‐3 at 0.20 V, and ECL‐4 at 0.51 V) were observed, respectively, on the curve of ECL intensity versus potential. The effects of initial potential scan direction, the presence of O2 or N2, potential scan ranges, supporting electrolyte and the concentration of lucigenin on these ECL peaks were examined. The electrochemistry of lucigenin in ethanol solution was also studied. The emitter of all ECL peaks was identified as N‐methylacridone (NMA) by analyzing the ECL spectra. The mechanism for these ECL peaks is proposed to be due to the reactions of lucigenin and its redox products such as Luc and DBA with dissolved oxygen or O2 electrogenerated by the dissolved oxygen at different potentials. The formation of new anodic ECL peaks in ethanol solution is due to longer lifetime of superoxide ions and easier electro‐oxidation of DBA in nonaqueous solution, revealing that the solvent plays an important role in the lucigenin ECL reactions.  相似文献   

2.
We have demonstrated that unsubstituted thiophene can be polymerized by Fe3+‐catalyzed oxidative polymerization inside nanosized thiophene monomer droplets, that is, nanoreactors, dispersed in aqueous medium, which can be performed under acidic solution conditions with anionic surfactant. Besides, we proposed a synthetic mechanism for the formation of the unsubstituted polythiophene nanoparticles in aqueous medium. This facile method includes a FeCl3/H2O2 (catalyst/oxidant) combination system, which guarantees a high conversion (ca. 99%) of thiophene monomers with only a trace of FeCl3. The average particle size was about 30 nm, within a narrow particle‐size distribution (PDI = 1.15), which resulted in a good dispersion state of the unsubstituted polythiophene nanoparticles. Hansen solubility parameters were introduced to interpret the dispersion state of the polythiophene nanoparticles with various organic solvents. The UV–Visible absorption and photoluminescence (PL) spectrum were measured to investigate the light emitting properties of the prepared unsubstituted polythiophene nanoparticle emulsions. According to non‐normalized PL analysis, the reduced total PL intensity of the polythiophene nanoparticle emulsions can be rationalized by self‐absorption in a wavelength range less than 500 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2097–2107, 2008  相似文献   

3.
Polyurethane-poly(2,2,2-trifluoroethyl methacrylate) (PU-PTFEMA) triblock copolymer aqueous dispersions were synthesized by three-step polymerization. In the first step, polyurethane prepolymers (PU) based on 2,4-toluene diisocyanate (TDI), polyether binary alcohol (N220), α,α-dimethylol propionic acid (DMPA), hydroxypropyl acrylic acid (HPA), and butanediol (BDO) were prepared with butanediol as the chain extender and methylethylketon as solvent. The next step involved neutralization and dispersion in water, where prepolymers were neutralised by the addition of triethylamine (TEA). The last step was the seeded emulsion polymerization, where PU emulsion was used as seed, kalium persulfate (KPS) as initiator and 2,2,2-trifluoroethyl methacrylate (TFEMA) as comonomer. Factors influencing the synthesis of PU-PTFEMA copolymer aqueous dispersion were studied. Experimental data indicate that factors influencing the synthesis of PU-PTFEMA copolymer aqueous dispersion mainly involve reaction temperature, reaction time, the concentration of initiator, DMPA content, TFEMA content. Rotational viscometer and dynamic light scattering (DLS) were used to characterize the properties of copolymer aqueous dispersion.  相似文献   

4.
We provide evidence of single attoliter oil droplet collisions at the surface of an ultra‐microelectrode (UME) by the observation of simultaneous electrochemical current transients (it curves) and electrogenerated chemiluminescent (ECL) transients in an oil/water emulsion. An emulsion system based on droplets of toluene and tri‐n‐propylamine (2:1 v/v) emulsified with an ionic liquid and suspended in an aqueous continuous phase was formed by ultrasonification. When an ECL luminophore, such as rubrene, is added to the emulsion droplet, stochastic events can be tracked by observing both the current blips from oxidation at the electrode surface and the ECL blips from the follow‐up ECL reaction, which produces light. This report provides a means of studying fundamental aspects of electrochemistry using the attoliter oil droplet and offers complementary analytical techniques for analyzing discrete collision events, size distribution of emulsion systems, and individual droplet electroactivity.  相似文献   

5.
Abstract

Organic-inorganic composite gel was prepared by using PEG-modified urethane acrylate (PMUA) gel and tetraethoxysilane (TEOS). PMUA gel was prepared by the phase-inversion emulsion polymerization of PMUA emulsion. The gelation of PMUA emulsion using this method enables PMUA gel to swell with H2O, TEOS, and ethanol. Hydrolysis and condensation reaction rates of the sol-gel process are strongly influenced by the pH controlled by catalysts such as HCl and NH4OH. Additionally, the morphology on the cross section of composite and the amount of silica ingredient incorporated into the composite gel were dependent on solvent, the molar ratio of H2O to TEOS, as well as the pH value.

As the silica content increased, due to hydrogen bonds interacting between PMUA gel and SiO2, particles, the tensile strength of composites considerably increased, whereas the elongation at break decreased. The incorporation of silica ingredient in PMUA gel/silica composites was verified with FTIR/ATR and SEM. The amount of the silica component in the composite was indirectly investigated by using TGA thermal analysis.  相似文献   

6.
Methacrylic monomer was used in soap-free emulsion polymerization in order to obtain a stable dispersion containing particles of the polymerized monomer. 2,2′-Azobis(2-methylpropionitrile) (AIBN) or 1,1′-azobis(1-acetoxy-1-phenylethane) (OTAZO-15) were used as the radical initiator. Although particles with a size of about 1.0 μm were obtained when using methyl methacrylate as the monomer and AIBN as the initiator, the particles did not exhibit good dispersion stability. When OTAZO-15, which has phenyl rings, was used as the initiator, the monomer phase solidified instead of forming particles in the aqueous phase. Benzyl methacrylate (BMA) monomer, which contains a phenyl ring, was polymerized using AIBN. Negatively charged particles with a size of 0.90 μm were formed. These particles exhibited good dispersion stability probably because of the pi electrons of the phenyl ring in the BMA monomer. The method in this study allows the synthesis of nearly micron-sized particles without surfactant, organic solvent, and electrolyte.  相似文献   

7.
Poly(N-vinylimidazole) (PVI) was synthesized by the precipitation polymerization using 2,2’-azobis(isobutyronitrile) (AIBN; initiator) and benzene (solvent) at two different monomer/initiator ratios. The solution polymerization was also performed with the following initiator/solvent systems: AIBN/water–methanol mixture (1:1 by volume) and 4,4’-azobis(4-cyanovaleric acid)/aqueous HCl solution (pH 0.8). All the four preparations of PVI in ethanol and in 0.2 M NaCl (pH 3 with HCl) were examined by dynamic light scattering (DLS). The CONTIN analysis of DLS data for each preparation from the solution polymerization showed a unimodal distribution in both ethanol and aqueous solvents. A good agreement was obtained between the molar masses in these different solvents by static light scattering (SLS). However, the polymers from the precipitation polymerization exhibited a heterogeneous bimodal distribution in DLS under the same conditions as above, indicating that the SLS data as in reference [6] (Savin et al. Macromolecules 37:6565) cause a serious error in the understanding of solution behavior of PVI.  相似文献   

8.
Oxidative polymerization of pyrrole has been studied using FeCl3 or (NH4)2S2O8 (APS) as oxidant, ethylhydroxyethylcellulose (EHEC) as a steric stabilizer and water or aqueous ethanol as the dispersion medium. Transmission electron micrographic images of the particles from the as-prepared dialysed dispersions in aqueous ethanol show small as well as large particles (about a decade larger) when FeCl3 is used as the oxidant but only large particles when APS is used as the oxidant. Small particles are not found when the dispersions are prepared in water, irrespective of the oxidant used. The particle size decreases with an increase in molecular weight of the stabilizer for the same stabilizer concentration. The minimum amount of stabilizer required to support dispersion polymerization decreases upon increasing the alcohol content of the medium. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3723–3729, 1999  相似文献   

9.
The fabrication of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile (PET/PAN) microspheres by γ-ray radiation-induced polymerization of acrylonitrile on micron-sized PET microspheres were first reported in this work. A PET emulsion was firstly prepared by dispersing a PET solution with 1,1,2,2-tetrachloroethane/phenol mixture as the solvent into an aqueous solution of sodium dodecyl sulfate. Then, PET microspheres were formed by precipitating the PET emulsion droplets from ethanol. The influence of the PET solvent and the weight ratio of ethanol to PET emulsion on the morphology of the PET microspheres had been investigated. After the surface of the prepared PET microspheres was grafted with poly(acrylic acid), the grafting polymerization of AN also had been successfully initiated by γ-ray radiation to form PAN microspheres with a size of about 100 nm on the PET microspheres. This work provides a new method to fabricate micron-sized PET microspheres, and further expands the functionalization of PET and its application fields.  相似文献   

10.
Dual functions of magnetic and fluorescent properties were created in composite particles that incorporated magnetite (Fe3O4) nanoparticles in particle cores of silica and fluorescent pyrene in particle shells of polystyrene. The Fe3O4 nanoparticles were prepared with a conventional homogeneous precipitation method and surface modified with a coupling agent of carboxyethylsilanetriol. The silica particles incorporating Fe3O4 nanoparticles were synthesized with a modified Stöber method in which the Fe3O4 nanoparticles were added to a system of tetraethylorthosilicate (TEOS)/ammonia/water/ethanol. Then, the magnetite/silica composite particles were coated with the pyrene/polystyrene shell in a soap-free emulsion polymerization, which was conducted in the presence of pyrene in a mixed solvent of water/ethanol. The composite particles prepared in the mixed solvent had both magnetic and fluorescent properties. The fluorescent spectrum of the particles with Fe3O4 was very similar to that without Fe3O4, indicating that the magnetic component within the core particles scarcely interfered with the fluorescent emission from the polymer shell.  相似文献   

11.
The polymerization of methylated β‐cyclodextrin (m‐β‐CD) 1 : 1 host‐guest compounds of methyl methacrylate (MMA) ( 1 ) or styrene ( 2 ) is described. The polymerization of complexes 1 a and 2 a was carried out in water with potassium peroxodisulfate (K2S2O8)/sodium hydrogensulfite (NaHSO3) as radical redox initiator at 60°C. Unthreading of m‐β‐CD during the polymerization led to water‐insoluble poly(methyl methacrylate) (PMMA) ( 3 ) and polystyrene ( 4 ). By comparison, analogously prepared polymers from uncomplexed monomers 1 and 2 in ethanol as organic solvent with 2,2′‐azoisobutyronitrile (AIBN) as radical initiator showed significantly lower molecular weights and were obtained in lower yields in all cases. Polymerization of m‐β‐CD complexed MMA in water, initiated with 2,2′‐azobis(N,N ′‐dimethyleneisobutyroamidine) dihydrochloride, occurred much faster than the polymerization of uncomplexed MMA in methanol under similar conditions. Furthermore, it was shown, that the precipitation polymerization of complexed MMA from homogeneous aqueous solution can be described by equations (Pn–1 ∝ lsqb;Irsqb;0.5) similar to those for classical polymerization in solution.  相似文献   

12.
We adopted an electrophoretic deposition method for the preparation of thin layers of insoluble composite nanoparticles composed of TiO2 core and about 2 nm thick shell of polythiophene, prepared by oxidative polymerization of thiophene. The reduced form of TiO2-polythiophene composite material was deposited on the conductive surface from an ultrasonically generated microdispersion. Varying the dispersion media, applied voltage and the electrode arrangement made it possible to control the quality and morphology of the films. Compact semitransparent films deposited on ITO electrodes, suitable for photoelectrical measurements, were obtained within short deposition times.  相似文献   

13.
Oxidation of nine primary aliphatic alcohols by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid leads to the formation of the corresponding aldehydes. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to alcohols. The reaction failed to induce the polymerization of acrylonitrile. Tetrabutylammonium chloride has no effect on the reaction rate. The proposed reactive oxidizing species is the tribromide ion. The oxidation of [1,1-2H2]ethanol exhibits a substantial kinetic isotope effect. The effect of solvent composition indicates that the rate increases with increase in the polarity of the solvent. The reaction is susceptible to both polar and steric effects of substituents. A mechanism involving transfer of a hydride ion in the rate-determining step has been proposed.  相似文献   

14.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. These template particles dispersed in aqueous solution have been used for the entrapment of ferrocene by a swelling process of methylene chloride emulsion droplets containing ferrocene within these particles, followed by evaporation of methylene chloride. The effects of CH2Cl2 volume and the [CH2Cl2]/[FeC10H10] (w/w) ratio on the size and size distribution of the swollen template particles were elucidated. Air-stable Fe3C nanoparticles embedded in amorphous carbon matrix (Fe3C/C) have been prepared by thermal decomposition of the ferrocene-swollen template polystyrene particles at 500 °C for 2 h in a sealed cell. Decomposition of these swollen template particles for 2 h at higher temperatures led to the formation of carbon nanotubes (CNTs) in addition to the Fe3C/C composite nanoparticles. The yield of the CNTs increased as the annealing temperature was raised. An opposite behavior was observed for the diameter of the formed CNTs. The size and size distribution, crystallinity, and magnetic properties of the different Fe3C/C composite nanoparticles have also been controlled by the annealing temperature.  相似文献   

15.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

16.
The anodic electrochemiluminescence (ECL) of dissolved oxygen with 2‐(dibutylamino) ethanol (DBAE) on platinum electrode has been reported previously by our group. Interestingly, the ECL intensity can be greatly amplified at TiO2 nanoparticles modified platinum electrode (TiO2/Pt), which is due to the catalytic effect of TiO2 nanoparticles to electrochemical oxidation of DBAE. It is the first case to obtain the enhanced ECL from luminophor by electrochemical catalysis of co‐reactant. The enhanced anodic ECL intensity can be quenched by dopamine sensitively. And the ECL intensity versus the logarithm of concentration of dopamine was linear over the 4.0×10?12–1.8×10?8 M (R2=0.9957), with the limit of detection of 2.7×10?12 M (S/N=3).  相似文献   

17.
Chen L  Lu L  Mo Y  Xu Z  Xie S  Yuan H  Xiao D  Choi MM 《Talanta》2011,85(1):56-62
Highly ordered titanium dioxide (TiO2) nanotubes film was successfully synthesized via anodic oxidation of a Ti foil in an ammonium fluoride-based ethylene glycol solution. The electrogenerated chemiluminescence (ECL) behavior of the resulting TiO2 nanotubes film was subsequently studied. Strong ECL emission was observed at −1.40 V (vs. Ag/AgCl) and the ECL spectrum displayed three emission peaks which were bathochromatically shifted by ca. 140 nm as compared to its corresponding photoluminescence (PL) emission peaks, indicating that the surface state plays an important role in the emission process. The ECL emission can also occur in a deareated solution attributing to the surface adsorbed O2 molecules. The ECL emission intensity was quenched by dopamine and greatly enhanced in the presence of dissolved O2 and H2O2, making it possible to detect these analytes. The TiO2 nanotubes film has been successfully applied to determine the dissolved O2 content in river and pond water samples, the H2O2 concentration in commercial disinfectant samples and the dopamine concentration in commercial dopamine injections with satisfactory results. The plausible ECL mechanisms of TiO2 nanotubes film in aqueous solution are discussed.  相似文献   

18.
Spherical MgCl2 adducts used as supports for a Ziegler–Natta catalyst for olefin polymerization were prepared by the general precipitation method. The influence of MgCl2/EtOH (mol/mol) and the dispersion speeds on the particle size (PS) and particle size distribution (PSD) were investigated. It was found that the former played a trivial role in controlling the PS and PSD, and the latter was the key factor. In particular, the influence of ethanol on the crystal structure was further examined, with consideration given to the performance of the supported Ziegler–Natta catalyst. It was believed that the reactions between MgCl2 and ethanol had a controlling effect on the destruction of the original anhydrous MgCl2, which was the key point in the preparation of suitable supports for the latest generation Ziegler–Natta catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3112–3119, 2002  相似文献   

19.
Radiometric determination of saturated and unsaturated aliphatic dicarboxylic acids has been developed using a precipitation reaction. The influence of the conditions of precipitation, the composition of the calcium salts of the acids, thepH, and the composition of solvent mixtures were investigated. The solubility of the calcium salts diminished with an increase of the ethanol content in weakly alkaline medium. Linear relations were found between the solubilities of the calcium salts and the dielectric constants of the solvent mixtures. The calcium salts have poor solubilities atpH 9 in 20% aqueous ethanol containing ammonia. The radiometric titrations were carried out in 0.05M solutions, using 0.05M 45Ca-labelled CaCl2 solution in 20% aqueous ethanol. The titrations were done in an apparatus suitable for the detection of soft β-emitting isotopes.  相似文献   

20.
A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号