首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
We investigate the influence of static disorder and thermal excitations on excitonic energy transport in the light-harvesting apparatus of photosynthetic systems by solving the Schro?dinger equation and taking into account the coherent hoppings of excitons, the rates of exciton creation and annihilation in antennas and reaction centers, and the coupling to thermally excited phonons. The antennas and reaction centers are modeled, respectively, as the sources and drains which provide the channels for creation and annihilation of excitons. Phonon modes below a maximum frequency are coupled to the excitons that are continuously created in the antennas and depleted in the reaction centers, and the phonon population in these modes obeys the Bose-Einstein distribution at a given temperature. It is found that the energy transport is not only robust against the static disorder and the thermal noise, but it can also be enhanced by increasing the randomness and temperature in most parameter regimes. Relevance of our work to the highly efficient energy transport in photosynthetic systems is discussed.  相似文献   

2.
甄红宇  杨伟  朱卫国  曹镛 《化学进展》2004,16(1):99-104
有机/高分子电致发光器件(O/PLED) 的发光效率远低于理论值,除器件结构有待优化之外,大部分三线态激子的能量没有得到利用是主要原因.近年来,利用三线态激子的发光来提高O/PLED的发光效率取得了积极的进展.本文从利用三线态激子的发光机制入手,综述了国内外在高效发光领域磷光材料利用的主要研究进展及发展方向。  相似文献   

3.
For triplet excitons in pairs of differently oriented molecules ESR lineshape is investigated analytically using a microscopic model. The model hamilton takes into account the coherent tranfer of the exciton between the two molecules, the Zeeman and fine-structure energy and the interaction with phonons. The analytical expression for the line positions and linewidths are evaluated using values characteristic for triplet excitons in naphthalene pairs.  相似文献   

4.
Jai Singh 《Chemical physics》1983,75(3):371-377
The interaction of lattice vibrations with excitons in inorganic and organic semiconductors/insulators is reinvestigated. These results expose the comparative nature of exciton—phonon interaction in the two types of solids and produce two new coupling functions useful for Frenkel exciton—phonon interaction.  相似文献   

5.
A brute-force numerical investigation has been carried out on the hopping of excitons in a three-dimensional molecular aggregate. Possibilities of vibronic decay, rapid chemical reactions of saturated species, radiative decay of overpopulated molecules, and cooperative chemical reactions involving saturated exciton populations on traps of two different types have been considered. Investigation have been performed with two types of initial distribution of excitons—facial and random—and for 10,000 or, sometimes, for 20,000 time steps each of duration 1ps. Several interesting observations have been made from this computer experiment: (1) The total number of occurrences of fast reactions depends upon the initial distribution of excitons. (2) It decreases if other exciton depleting processes are at work. (3) It also depends on the pattern of placement of traps. (4) The location of impurities also affects the rate of occurrence of these reactions. Thus, more reactions occur when the excitons are initially concentrated on one face and traps are suitably located on the path of flow of these excitons. A random initial distribution tends to equilibrate the excitons quickly over all the lattice points, thus giving rise to fewer reactions. (5) The number of reactions need not necessarily increase with the number of reaction centers; in fact, it decreases as more centers are added when the supply of excitons is severely limited. (6) A Complicated dynamics results when different types of additional processes, viz., enhanced fluorescence, radiative emissions, and cooperative chemical reactions are simultaneously allowed. The cooperative process has been clearly found to dominate. A first-order rate constant of about 108 s-1 has been calculated for the occurrence of the cooperative process. This rate is affected when other nonconserving processes are switched on. Observations (1), (4), and (5) are the most important conclusions of our work. They lie outside the scope of traditional models such as the random walk model, the diffusion model, and the lattice model for the migration of excitons in a molecular aggregate. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
There have been a number of theoretical treatments of excitons in DNA, most neglecting both the intrachain and interchain wavefunction overlaps of the electron and hole, treating them as Frenkel excitons. Recently, the importance of the intrachain and interchain coupling has been highlighted. Experiments have shown that in (dA)n oligomers and in duplex (dA)n.(dT)n, to be abbreviated (A/T), where A is adenine and T is thymine, the exciton wavefunction is delocalized over several bases. In duplexes it is possible to have charge-transfer (CT) excitons. Theoretical calculations have suggested that CT excitons in DNA may have lower energy than single chain excitons. In all the calculations of excitons in DNA, the polarization of the surrounding water has been neglected. Calculations have shown, however, that polarization of the water by an excess electron or a hole in DNA lowers its energy by approximately 1/2 eV, causing it to become a polaron. It is therefore to be expected that polarization charge induced in the surrounding water has a significant effect on the properties of the exciton. In what follows, we present calculations of some properties CT excitons would have in an A/T duplex taking into account the wavefunction overlaps, the effect of the surrounding water, which results in the electron and hole becoming polarons, and the ions in the water. As expected, the CT exciton has lowest energy when the electron and hole polarons are directly opposite each other. By appropriate choice of the dielectric constant, we can obtain a CT exciton delocalized over the number of sites found in photoinduced absorption experiments. The absorption threshold that we then calculate for CT exciton creation in A/T is in reasonable agreement with the lowest singlet absorption deduced from available data.  相似文献   

7.
白光有机发光二极管(white organic light-emitting diodes,WOLEDs)在全色显示、固态照明以及背光源等领域有巨大的应用前景,其研究备受关注.其中,荧光/磷光混合型WOLEDs因兼具荧光材料的长寿命和磷光材料的高效率,被认为是目前最有希望实现照明应用的器件结构.荧光/磷光混合型WOLEDs最重要的问题是要解决荧光材料的单线态激子和磷光材料的三线态激子的协同发光.为了避免单线态激子和三线态激子的相互猝灭问题,必须设计有效的器件结构.本文以两种不同三线态能级的蓝光荧光材料为研究对象,介绍了不同高性能荧光/磷光混合型WOLEDs的结构设计与性能.研究表明,载流子传输平衡的高效结构设计和激子分布宽范围内的有效调控是实现高性能荧光/磷光混合型WOLEDs的关键.  相似文献   

8.
The EPR of triplet excitons and of shallow triplet traps in crystalline benzophenone is observed by an optical detection technique. The predominantly radiationless mode of de-excitation of the traps is demonstrated and shown to account for most of the quenching of electronic excitation energy in this system.  相似文献   

9.
The combination of molecular spin densities and of structural data is shown to provide a sensitive test for the fine structure splittings and principal axes of triplet spin excitons in organic ion-radical crystals, in support of weakly-perturbed molecular sites in these solids. The exchange pathway in Rb(TCNQ) and the occurrence of dimer radicals, with fractional charges, in several tetrameric (TCNQ)42? stacks illustrate the comparisons afforded by computations of fine structure parameters for triplets states in the solid.  相似文献   

10.
《中国化学快报》2023,34(3):107383
The strong intrinsic Coulomb interactions of Frenkel excitons in crystalline carbon nitride (CCN) greatly limits their dissociation into electrons and holes, resulting in unsatisfactory charges separation and photocatalytic efficiency. Herein, we propose a strategy to facilitate excitons dissociation by molecular regulation induced built-in electric field (BIEF). The electron-rich pyrimidine-ring into CCN changes the charge density distribution over heptazine-rings to induce BIEF between melon chains. Such BIEF is sufficient to overcome the considerable exciton binding energy (EBE) and reduce it from 38.4 meV to 16.4 meV, increasing the excitons dissociation efficiency (EDE) from 21.5% to 51.9%. Our results establish a strategy to facilitate excitons dissociation through molecular regulation induced BIEF, targeting the intrinsic high EBE and low EDE of polymer photocatalysts.  相似文献   

11.
Exciton migration over long distances is a key issue for various applications in organic electronics. We investigate a disordered material system which has the potential for long exciton diffusion lengths in combination with a high versatility. The perylene bisimide dye Perylene Red is incorporated in a polymer matrix with a high concentration. The dye molecules represent active sites with a narrow energy distribution for the electronically excited states. Excitons can be efficiently exchanged between them by F?rster resonance energy transfer (FRET). The narrow energy distribution reduces drastically the trapping probability of the excitons compared to polymers and allows for long transfer distances. To characterize the mobility of the excitons and their diffusion length the dye Oxazine 1 is added as an acceptor in low concentration and the transfer probability to the acceptor is determined by measuring the reduction of Perylene Red fluorescence. The quenched quantum yield is measured for dye concentrations varying from 0.05?M to 0.15 M for Perylene Red and from 0.3 mM to 3 mM for Oxazine 1. The experimental results are compared to a model which assumes that excitons can diffuse through the material by FRET between Perylene Red sites and are trapped at an acceptor with a final hetero FRET step. We find a quite good match between theory and experiment though the observed diffusion constant is about two times smaller than the calculated one. The exciton diffusion length extracted from the data is 30 nm for a Perylene Red concentration of 0.1 M and demonstrates that long distance energy transfer is possible in this disordered material system.  相似文献   

12.
A simple approach to the trapping of moving quasiparticles in solids, valid for arbitrary concentration of traps, is developed. While the analysis is presented in the context of Frenkel excitons in molecular crystals, its applicability is general. A central result is that observable quantities such as the liminescence intensity, the quantum yield, and also the surviving number of quasiparticles can be obtained from exact expressions valid for a single trap by replacing the self-propagator by a sum over propagation in the trap-influenced region. Arbitrary concentrations and arbitrary nature of motion including arbitrary degree of coherence can thus be addressed within a unified framework of exciton dynamics.  相似文献   

13.
Herein, we focus on the principles of photoconduction in random semiconductors—the key processes being optical generation of charge carriers and their subsequent transport. This is not an overview of the current work in this area, but rather a highlight of elementary processes, their involvement in modern devices and a summary of recent developments and achievements. Experimental results and models are discussed briefly to visualize the mechanism of optical charge generation in pure and doped organic solids. We show current limits of models based on the Onsager theory of charge generation. After the introduction of experimental techniques to characterize charge transport, the hopping concept for transport in organic semiconductors is outlined. The peculiarities of the transport of excitons and charges in disorderd organic semiconductors are highlighted. Finally, a short discussion of ultrafast transport and single chain transport completes the review.  相似文献   

14.
In the antenna system of photosynthetic bacteria, pigments form circular aggregates whose excitations are excitons with quantum-mechanical coherence extending over many pigments. These excitons play crucial roles in light harvesting, storage, and excitation-energy transfer (EET). EET takes place rapidly to and/or from optically forbidden exciton states, without total transition dipole, within the antenna system and to the reaction center. Such EETs cannot be rationalized by F?rster's formula, the traditional theory on EET, because it allows EET only between optically allowed states. The coherence in the excitons seems to prohibit rapid EET on this formula. The bacteria overcome this difficulty by circumventing the coherence, using the effects of the physical size of an aggregate that is larger than the shortest distance between pigments in the donor and pigments in the acceptor. The shortest-distance pair therein cannot detect whether the aggregate has a nonvanishing total transition dipole or not, since the pair see effectively only the transition dipole on the other pigment in themselves. The transition dipole facilitates rapid EET even to and/or from optically forbidden exciton states. Such EETs have enabled us to develop a general formula for the rate constant of EET. This is a formula in the weak-interaction limit, and so is F?rster's formula, but it correctly takes into account the above size effect.  相似文献   

15.
Unlike the majority of molecular systems quantum dots can accommodate multiple excitations, which is a particularly important attribute for potential lasing applications. We demonstrate in this work the concept of using nth order nonlinear spectroscopies in the transient grating configuration as a means of selectively exciting (n-1)/2 excitons in a semiconductor and probing the subsequent relaxation dynamics. We report a direct observation of multiparticle dynamics on ultrashort time scales through comparison of third and fifth order experiments for CdSe colloidal quantum dots. Time constants associated with multiexciton recombination and depopulation dynamics are reported. Deviation from a Poisson model for the distribution of photoexcited excitons, biexcitons, and triexcitons is also discussed.  相似文献   

16.
A self-consistent approach to the calculation of equilibrium and transport characteristics of inert gases and liquids in complex narrow-pore systems based on the lattice-gas model is proposed. A supramolecular structure for fine-grained solids was constructed and the adsorbate distribution within the pore volume is described. The supramolecular structure is simulated using slit-shaped, cylindrical, spherical, and globular segments. Additionally, junctions of pore systems with different structures are included, and the heterogeneity of their walls and the presence of structural defects in the pore segments are taken into account. The distributions of molecules are described in the quasi-chemical approximation to take into account intermolecular interactions using calibration functions to correct this approximation in the near-critical area. Expressions for local and integrated flow transfer coefficients are constructed, in particular, self-diffusion, shear viscosity and heat conductivity. The contributions of the near-wall areas and the core parts of pores to the general form of phase diagrams, the effect of the pore size on the conditions of capillary condensation, and the role of surface mobility of molecules are discussed.  相似文献   

17.
Quasi-two-dimensional (2D) perovskites are promising candidates for light generation owing to their high radiative rates. However, strong exciton–phonon interactions caused by mechanical softening of the surface act as a bottleneck in improving their suitability for a wide range of lighting and display applications. Moreover, it is not easily available to tune the phonon interactions in bulk films. Here, we adopt bottom-up fabricated blue emissive perovskite nanoplatelets (NPLs) as model systems to elucidate and as well as tune the phonon interactions via engineering of binary NPL solids. By optimizing component domains, the phonon coupling strength can be reduced by a factor of 2 driven by the delocalization of 2D excitons in out-of-plane orientations. It shows the picosecond energy transfer originated from the Förster resonance energy transfer (FRET) efficiently competes with the exciton–phonon interactions in the binary system.  相似文献   

18.
The effect of trapped charge carriers on the delayed fluorescence of crystalline anthracene is reinterpreted in terms of a simple model taking into account the CT state intermediate in triplet-triplet annihilation. The Coulomb stabilization of the CT state is the main factor affecting the production of singlet Frenkel excitons. A method of experimental verification is proposed.  相似文献   

19.
Photoinduced absorption measurements on poly(phenylenevinylene), PPV, or its derivatives, illuminated with photons of energy past the absorption edge revealed that some percentage of the photons create a long-lived excitation rather than the expected excitons. We present the evidence that these excitations are polaron pairs, which are essentially excimers. The reasons why this percentage varies from sample to sample are discussed. Also discussed are the reasons why polaron pairs in some derivatives of PPV emit light while in others they do not. Calculations with a relatively simple Hamiltonian can account well for the peaks in the photoinduced absorption produced by these pairs.  相似文献   

20.
We simulate the interchain polaron recombination process in conjugated polymer systems using a nonadiabatic molecular dynamics method, which allows for the coupled evolution of the nuclear degrees of freedom and multiconfigurational electronic wavefunctions. Within the method, the appropriate spin symmetry of the electronic wavefunction is taken into account, thus allowing us to distinguish between singlet and triplet excited states. It is found that the incident polarons can form an exciton, form a bound interchain polaron pair, or pass each other, depending on the interchain interaction strength and the strength of an external electric field. Most importantly, we found that the formation of singlet excitons is considerably easier than triplet excitons. This shows that in real organic light emitting devices, the electroluminescence quantum efficiency can exceed the statistical limitation value of 25%, in agreement with experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号