首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the magnetic hyperfine field (B hf ) at Ce impurity in Co using 140La→ 140Ce probe. The radioactive 140La produced by neutron irradiation of lanthanum metal with thermal neutrons was introduced in Co by arc melting in argon atmosphere. The present measurements cover the temperature range from 4.2– 1300 K. Two pure magnetic interactions were observed at impurity sites, corresponding to a ferromagnetic ordering of Co moments in hcp and fcc phases. The temperature dependence of B hf for both phases, however, shows a sharp deviation from an expected standard Brillouin-like behavior for the host magnetization. The results are discussed in terms of a simple molecular-field model where the localized moment at impurity ions as well as the conduction electron contributions to the hyperfine field are taken into account.  相似文献   

3.
We report the nuclear orientation of near-stoichiometric samples of ZrZn2 containing trace impurities of radioactive54Mn and60Co in the temperature range 6.5–60 mK and in applied fields between 0.2 and 5.7 T. Analysis of the resullts indicates that in both cases, the transition-element impurities occupy two sites (the Zr and Zn sites) with about equal probablities. In one site, most probably that of Zr, both impurities have positive hyperfine fields of +12.0 T and +3.8 T for Mn and Co, respectively; in the other site, the corresponding hyperfine fields are negative, with the values −6.0 T and −6.9 T. The dynamic hyperfine interaction of Mn in ZrZn2 has also been studied using the thermal cyclic method with a weak thermal link, and was analyzed for the two relaxation times corresponding to the different lattice sites.  相似文献   

4.
The lattice parameters of as-prepared and annealed Co nanowires with hcp and fcc structures have been measured using the in situ high-temperature x-ray diffraction method. The hcp and fcc Co nanowires have been fabricated within the porous anodic alumina membranes by a direct-current electrodeposition technique. The results indicate that the variational quantity of the interplanar spacing for hcp Co nanowire arrays is bigger than that for fcc Co nanowire arrays in spite of as-prepared and annealed samples. The structural difference between hcp and fcc Co nanowires results in the different thermal expansion behaviors.  相似文献   

5.
Using refined preparation techniques, cadmium guest atoms have been positioned at different sites on the surfaces of nickel crystals. The magnetic hyperfine fields and the electric field gradients at the Cd nuclei were measured by time-dependent perturbed angular correlation (TDPAC) spectroscopy of the emitted gamma radiations. By measuring the combined interactions, electric field gradients and magnetic hyperfine fields can be unambiguously attributed to each surface site. The signs of the magnetic hyperfine fields are determined by applying an external magnetic field and choosing the appropriate γ-ray detector configuration. The measured fields correlate with the number of neighbouring host atoms. Band structure calculations confirm this finding and predict magnetic fields for various sp elements from the band structure of the s-like conduction electrons. The quadrupolar interactions are manifestations of the balance in the occupation of the guest p-sublevels. These results provide new information on the structure and formation of electronic configurations of sp elements in different local environments and will contribute to understanding electronic effects on surfaces.  相似文献   

6.
In the pseudobinary intermetallic compounds Zr(Fe1-xCox)2 (0?x?0.2) the hyperfine fields of all nuclei present are investigated by means of Mössbauer effect and NMR. While for the “nonmagnetic” site the Zr-hyperfine field depends on the configuration of the nearest Fe, Co neighbours, no such effect is observed for the hyperfine fields on the “magnetic” sites. A large pseudodipolar interaction is observed for the Fe and Co atoms, from which the coexistence of several directions of magnetization can be deduced. The easy direction seems to be determined by the respective Fe/Co configuration.  相似文献   

7.
We present first-principles calculations of hyperfine fields of heavy impurities in bcc Fe. In particular, the effect of lattice relaxations on the calculated hyperfine fields are studied. The calculations are based on a full-potential Korringa–Kohn–Rostoker Green's-function method for defects and employ the local spin-density approximation for the exchange and correlation effects. The calculated lattice relaxations around the 5sp and 6sp impurities in Fe are found to be relatively small, for the first and second nearest neighbor shells less than 6% of the nearest neighbor distance. Also the estimated relative volume changes induced by the sp impurities are found to be around 60–95% of the elementary volume of Fe, surprisingly small in view of the large atomic volumes of the impurities. The calculated hyperfine fields of 5sp and 6sp elements are compared with available experimental data and it is shown that the inclusion of lattice relaxations in the calculation improves the agreement with experiments.  相似文献   

8.
We report β-particle and γ-ray angular distribution measurements from60Co oriented in CoAu at low temperatures in applied fields up to 72 kOe and Co concentrations of 0.95 to 11 at.%. The results are explained by assuming a random molecular field interaction between groups of Co impurities. The hyperfine field on Co nuclei in groups of three or more nearest neighbors is negative and has a value near ?180 kOe. The induced field on Co-pair nuclei is small and probably also negative. Complete polarization of the Co moments in the more concentrated alloys requires a very large applied field.  相似文献   

9.
The structural, magnetic and transport properties of Co/Rh sandwiches grown by ultra high vacuum evaporation and sputtering have been studied. High-energy electron diffraction observations during the growth reveal that both Co and Rh layers have been stabilised in the (111) fcc structure for the evaporated sandwiches. X-ray measurements performed on sputtered samples show a predominant fcc polycrystalline structure of the stacks with a preferential (111) texture. Magnetisation and magnetoresistance measurements show a very strong antiferromagnetic exchange coupling for thin Rh layers, reaching for 4.8? Rh, the strongest ever observed in exchange coupled systems. This value is in good agreement with the value of obtained by ab initio calculations for Co/Rh (hcp) superlattices. This is explained by the magnetic nature of the Co/Rh interfaces. Indeed, the variation of the measured saturation magnetisation as a function of the Co layer thickness shows no evidence of Co moment reduction for the Co atoms located at the interfaces, even for the very thin layers. The value of the preserved magnetic moments of the cobalt atoms at the interfaces is confirmed by ab initio calculations for Co/Rh superlattices taking the intermixing into account. Received: 18 February 1998 / Received in final form: 30 April 1998 / Accepted: 29 May 1998  相似文献   

10.
The high resolution hyperfine spectroscopy, modulated adiabatic passage of oriented nuclei (MAPON), has been applied for the first time to high purity, elemental systems. Detailed comparisons between the electric quadrupole hyperfine interactions (EQI’s) and, in particular, their distributions, are obtained for60CoCo where the hosts are a single crystal of hcp cobalt and a polycrystalline cobalt foil of predominantly fcc character. For hcp Co, with the electronic magnetization, M, parallel to the c-axis, the mode value P/h=3e2qQ/4I(2I−1)h=−48.5(5) kHz. This fractional distribution implies the sharpest electric field gradient (efg) measured in a metal to date, using MAPON spectroscopy, in excess of two times sharper than that of the most dilute impurity efg in a crystallographically cubic ferromagnetic host. The mode efg is Vzz=−27.3(32)×1019 Vm−2. For the polycrystalline, predominantly fcc foil, prepared by quenching, the EQI mode value is P/h=−6.2(4) kHz with a FWHM of 12.0(7) kHz yielding a mode efg of Vzz=−3.5(5)×1019 Vm−2.  相似文献   

11.
The stability of the ferromagnetic state in Fe, Co, and Ni metals under high pressure is investigated using generalized gradient approximation (GGA) and GGA+U within the density functional theory (DFT). It is found that the ferromagnetic state under pressure is very different for Fe, Co, and Ni metals, and is closely associated with the crystal structure. In the case of Fe, a ferromagnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at pressure around 12 and 115 GPa for GGA and GGA+U, respectively. For Co, the phase transition from a ferromagnetic hcp to a nonmagnetic fcc is found around 107 GPa for GGA. In contrast to Fe and Co, a ferromagnetic fcc state in Ni is maintained even at 200 GPa. The calculated results suggest that the suppression of ferromagnetism in Fe, Co, and Ni is due to pressure-induced decrease of the density of state at the Fermi level.  相似文献   

12.
The authors present a new approach of internal field 59Co NMR spectra assignment leaving apart from “usual” decomposition on “pure” hcp and fcc stackings, and a set of stacking faults (sfs) sf1–sf5 with a certain lines position. The authors propose including into consideration not only cobalt structural features as well as its magnetic nature due to the strong ferromagnetism in Co metal. The last fact supposes an existence of different magnetic species such as magnetic domains, domain walls, and single-domain particles, thereby helping to spectral lines assignment according to both structural and magnetic origin. The examined sample contains fcc and hcp resonance peaks in both domains and domain walls giving the hcp to fcc ratio equal to 1.9, as well a significant amount of Co sfs, or Co in loose coordination, up to 10 %. The research exhibits a good agreement of all implemented techniques.  相似文献   

13.
Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.  相似文献   

14.
To demonstrate the potential of nuclear magnetic resonance (NMR) spectroscopy for investigating detailed structural properties in ferromagnetic materials, three different particle sized cobalt (Co) powders have been ball milled for 24 h are accurately characterised by internal-field 59Co NMR. The 59Co NMR spectra show distinct resonance bands corresponding to the different Co sites, face-centred-cubic (fcc), hexagonal-close-packed (hcp) and stacking faults (sfs), in Co metal powders. The hcp+fcc→hcp phase transition encouraged by ball-milling was observed and quantitative values for each Co environment were obtained.  相似文献   

15.
Nuclear magnetic resonance on oriented nuclei (NMR-ON) on 59Fe isotope in Ni was performed. The magnetic hyperfine splitting frequency of was determined to be ν(B 0?=?0)?=?48.32 (2) MHz. Using the known magnetic moment the magnetic hyperfine field was deduced as B HF?=???28.32 (5) T. The effective nuclear spin-lattice relaxation time was also measured. The measured value is compared with experimental values of 3d-impurity in nickel host.  相似文献   

16.
Technical Physics - Specific features of structure formation at the β → α (fcc → hcp) polymorphic transformation in Co–Nb binary alloys have been investigated by...  相似文献   

17.
59Co spin echo NMR spectra in the magnetically ordered phase of the MgCu2 type RCo2 compounds (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm) have been observed. For the RCo2 with the easy direction of magnetication parallel to the 〈011〉 or 〈111〉 direction, the 59Co hyperfine fields at two magnetically inequivalent Co sites are found to be antiparallel, revealing a large anisotropy in the 59Co hyperfine field. The results are discussed in terms of a large and anisotropic orbital moment of Co. The transferred hyperfine field due to rare earth spins is estimated from well resolved satellite lines observed in Tb1?xYxCo2. The nuclear quadrupole splitting in the magnetically ordered phase is found to be always larger than that in the paramagnetic phase.  相似文献   

18.
In this work, first-principles DFT scalar-relativistic calculations using the GGA functionals were performed to study the equilibrium properties of alternate structural phases of Co and Rh. The results show that cobalt orders ferromagnetically in the bcc, fcc and hcp phases, where the Co atoms carry magnetic moments of 1.80 μB, 1.71 μB and 1.69 μB, respectively. Rhodium is ferromagnetic only in the bcc phase where the Rh atoms carry a moment of 0.56 μB. The results yield evidence for the influence of the crystal symmetry in establishing ferromagnetic order in transition metals.  相似文献   

19.

A detailed correlation between microstructure evolution and allotropic phase transformations occurring in Co when subjected to ball milling has been carried out. After short-term milling, the starting mixture of hcp + fcc Co develops into an almost pure hcp phase. However, for longer milling times, plastic deformation introduces large amounts of stacking faults, especially of twin type, in the hcp structure. As a consequence, some of the hcp Co is converted back into fcc and the hcp unit cell is progressively anisotropically distorted. After long-term milling, a steady 'pseudo-equilibrium' state is observed, where all microstructural parameters, including the fcc percentage, tend to level off. However, the milling intensity can still be adjusted to increase further the stacking-fault probability and, consequently, the amount of fcc Co in the milled powders. The results imply that the stacking-fault formation, rather than the local temperature rise or crystallite size reduction associated with the milling process, is the main mechanism governing the hcp-fcc transformation.  相似文献   

20.
X-ray O Kα, Rh Mγ and a series of M Lα emission spectra, ESCA spectra of the valence and inner levels, and O K and Rh MIII quantum-yield spectra for X-ray photoemission of the rhodium double oxides MRhO2 (M = Li, Na, K), MRh2 O4 (M = Be, Mg, Ca, Sr, Ba, Co, Ni, Cu, Zn, Cd, Pb), RhMO4 (M = V, Nb, Ta) and Rh2MO6 (M = Mo, W) have been measured and the dependence of electronic structure on the metal M analysed. For all compounds the inner part of the valence band corresponds to O 2pσ + O 2pπ + Rh 4d states, while the outer part corresponds to Rh 4d. The valence band is separated from the conduction band by a narrow gap of width less than 1 eV. The first empty band, near the bottom of the conduction band, is formed by Rh 4d states, followed by a band due to vacant O 2p states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号