首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New zinc(II) 2-bromobenzoate complex compounds with general formula Zn(2-BrC6H4COO)2·nxH2O (where L = urea, nicotinamide, N-methylnicotinamide, N,N-diethylnicotinamide, isonicotinamide, phenazone n = 0–2, x = 0–2) were prepared and characterized by elemental analysis, IR spectroscopy and thermal analysis. The thermal decomposition of hydrated compounds started with dehydration process. During the thermal decomposition organic ligand, carbon dioxide and bis(2-bromophenyl)ketone were evolved. The solid intermediates and volatile products of thermal decomposition were proved by IR spectroscopy and mass spectrometry. The final solid product of the thermal decomposition heated up to 1073 K was zinc oxide. Antimicrobial activity of the prepared compounds was tested against various strains of bacteria, yeasts and filamentous fungi (E. coli, S. aureus, C. albicans, R. oryzae, A. alternate and M. gypseum). It was found that the selected bacteria were more sensitive to the studied zinc(II) complex compounds than the yeast and the filamentous fungi.  相似文献   

2.
The complexes of rare earth elements with 2,3-naphthalenedicarboxylic acid of the formula: Ln2(C12H6O4)3·nH2O, where Ln = La(III)-Lu(III) and Y(III); n = 3 for La(III), Ce(III); n = 6 for Pr(III)-Yb(III) and Y(III) and n = 5 for Lu(III) have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis (TG, DTG, DTA and TG-FTIR) and X-ray analysis. They are sparingly soluble in water and stable at room temperature. During heating in air atmosphere, they lose all water molecules in several steps, generally in two or three steps, except for the La(III) and Ce(III) complexes which lose all water molecules in one step. The anhydrous compounds are stable up to about 773 K and then decompose to corresponding oxides. The thermal decomposition is connected with the release of water molecules (443 K), carbon dioxide (713 K) and hydrocarbons.  相似文献   

3.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

4.
New zinc(II) 4-hydroxybenzoate complex compounds with general formula [Zn(4-OHbenz)2LnxH2O, where 4-OHbenz = 4-hydroxybenzoate; L = isonicotinamide, N-methylnicotinamide, N,N-diethylnicotinamide, thiourea, urea, phenazone, theophylline, methyl-3-pyridylcarbamate; n = 2, 3; x = 0–3, 5, were synthesized and characterised by elemental analysis, thermal analysis and IR spectroscopy. The thermal behaviour of the prepared compounds was studied by TG/DTG and DTA methods in argon atmosphere. The thermal decomposition of hydrated compounds started with dehydration. During the thermal decomposition, organic ligand, carbon monoxide, carbon dioxide and phenol were evolved. The final solid product of the thermal decomposition was zinc or zinc oxide. The volatile gaseous product, solid intermediate products and the final product of thermal decomposition were identified by IR spectroscopy, mass spectrometry, qualitative chemical analyses and X-ray powder diffraction method. The antimicrobial activity of zinc(II) carboxylate compounds was tested against various strains of bacteria, yeasts and filamentous fungi (S. aureus, E. coli, C. parapsilosis, R. oryzae, A. alternata, M. gypseum). The presence of zinc in complexes led to the increase in their antimicrobial activity in comparison with free 4-hydroxybenzoic acid.  相似文献   

5.
By diffusion in gel medium new complexes of formulae: Nd(btc)⋅6H2O, Gd(btc)⋅4.5H2O and Er(btc)·5H2O (where btc=(C6H3(COO)3 3−) were obtained. Isomorphous compounds were crystallized in the form of globules. During heating in air atmosphere they lose stepwise water molecules and then anhydrous complexes decompose to oxides. Hydrothermally synthesized polycrystalline lanthanide trimellitates form two groups of isomorphous compounds. The light lanthanides form very stable compounds of the formula Ln(btc)⋅nH2O (where Ln=Ce−Gd and n=0 for Ce; n=1 for Gd; n=1.5 for La, Pr, Nd; n=2 for Eu, Sm). They dehydrate above 250°C and then immediately decomposition process occurs. Heavy lanthanides form complexes of formula Ln(btc)⋅nH2O (Ln=Dy−Lu). For mostly complexes, dehydration occurs in one step forming stable in wide range temperature compounds. As the final products of thermal decomposition lanthanide oxides are formed.  相似文献   

6.
Three new complex compounds of general formula Zn{4-ClC6H3-2-(OH)COO}2L2nH2O (where L=thiourea (tu), nicotinamide (nam), caffeine (caf), n=2,3), were prepared and characterized by chemical analysis, IR spectroscopy and their thermal properties were studied by TG/DTG, DTA methods. It was found that the thermal decomposition of hydrated compounds starts with the release of water molecules. During the thermal decomposition of anhydrous compounds the release of organic ligands take place followed by the decomposition of salicylate anion. Zinc oxide was found as the final product of the thermal decomposition performed up to 650°C. RTG powder diffraction method, IR spectra and chemical analysis were used for the determination of products of the thermal decomposition.  相似文献   

7.
Five new complex compounds of general formula Zn(Hsal)L2·nH2O (where Hsal=OHC6H4COO-, L=thiourea (tu), nicotinamide (nam), caffeine (caf), theobromine (tbr), n=2-4), were prepared and characterized by chemical analysis, IR spectroscopy and studied by methods of thermal analysis (TG/DTG, DTA). It was found that the thermal decomposition of hydrated compounds starts with the release of water molecules. During the thermal decomposition of anhydrous compounds the release of organic ligands take place followed by the decomposition of salicylate anion. Zinc oxide was found as the final product of the thermal decomposition heated up to 800°C. RTG powder diffraction method, IR spectra and chemical analysis were used for the determination of products of the thermal decomposition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Solid-state compounds of general formula Ln2L3·nH2O, where L represents 1,4-bis(3-carboxy-3-oxo-prop-1-enyl)benzene and Ln = La, Ce, Pr, Nd, Sm, were synthesized. Complexometric titrations with EDTA, thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. The results led to information about the composition, dehydration, crystallinity, and thermal decomposition of the synthesized compounds.  相似文献   

9.
Spectroscopic (IR), thermoanalytical (TG/DTG, DTA) and biological methods were applied to investigate physicochemical and biological properties of seven zinc(II) complex compounds of the following formula Zn(HCOO)2·2H2O (I), Zn(HCOO)2·tph (II), Zn(CH3COO)2·2H2O (III), Zn(CH3COO)2·tph (IV), Zn(CH3COO)2·2phen (V), Zn(CH3CH2COO)2·2H2O (VI), Zn(CH3CH2CH2COO)2·2H2O (VII), where tph=theophylline, phen=phenazone. The formation of various intermediates during thermal decomposition suggests the dependence on the length of aliphatic carboxylic chain and type of N-donor ligand (tph, phen). The final product of the thermal decomposition was ZnO. The antimicrobial activity of these complexes were tested against G+ and G bacteria. Strong inhibitive effect was observed towards E. coli, salmonellae and Staph. aureus.  相似文献   

10.

Synthesis of ammonium hydroxodisulfitoferriate(III), (diammonium catena-{bis(μ 2-sulfito-κO,κO)-μ 2-hydroxo-κ2O}ferrate(III) monohydrate) (NH4)2[Fe(OH)(SO3)2]·H2O (compound 1) and its thermal behavior is reported. The compound is stable in air. Its thermal decomposition proceeds without the expected quasi-intramolecular oxidation of sulfite ion with ferric ions. The disproportionation reaction of the ammonium sulfite, formed from the evolved NH3, SO2 and H2O in the main decomposition stage of 1, results in the formation of ammonium sulfate and ammonium sulfide. The ammonium sulfide is unstable at the decomposition temperature of 1 (150 °C) and transforms into NH3 and H2S which immediately forms elementary sulfur by reaction with SO2. The formation and decomposition of other intermediate compounds like (NH4)2SnOx (n = 2, x = 3 and n = 3, x = 6) results in the same decomposition products (S, SO2 and NH3). Two basic iron sulfates, formed in different ratios during synthesizing experiments performed under N2 or in the presence of air, have been detected as solid intermediates which contain ammonium ions. The final decomposition product was proved to be α-Fe2O3 (mineral name hematite).

  相似文献   

11.
New zinc acetate based complex compounds (of general formula Zn(CH3COO)2·1?2L·nH2O) containing one or two molecules of urea, thiourea, coffeine and phenazone were prepared namely: Zn(CH3COO)2·2.5H2O, Zn(CH3COO)2·2u·0.5H2O, Zn(CH3COO)2·tu·0.5H2O, Zn(CH3COO)2·2tu, Zn(CH3COO)2·cof·2.5H2O, Zn(CH3COO)2·2cof·3.5H2O, Zn(CH3COO)2·2phen·1.5H2O. The compounds were characterized by IR spectroscopy, chemical analysis and thermal analysis. Thermal analysis showed that no changes in crystallographic modifications of the compounds take place during (heating in nitrogen before) the thermal decompositions. The temperature interval of the stability of the prepared compounds were determined. It was found that the thermal decomposition of hydrated compounds starts by the release of water molecules. During the thermal decomposition of anhydrous compounds in nitrogen the release of organic ligands take place followed by the decomposition of the acetate anion. Zinc oxide and metallic zinc were found as final products of the thermal decomposition of the zinc acetate based complex compounds studied. Carbon dioxide and acetone were detected in the gaseous products of the decomposition of the compounds if ZnO is formed. Carbon monoxide and acetaldehyde were detected in the gaseous products of the decomposition, if metallic Zn is formed. It is supposed that ZnO and Zn resulting from Zn acetate complex compounds here studied, possess different degree of structural disorder. Annealing takes place by further heating above 600°C.  相似文献   

12.
Novel zinc(II) complex compounds of general formula Zn(C6H5COO)2·L2 (where L=caffeine (caf) and urea (u)) were synthesized and characterized by elemental analysis and IR spectroscopy. The thermal behaviour of the complexes was studied during heating in air by thermogravimetry. It was found that the thermal decomposition of the anhydrous Zn(II) benzoate compounds with bioactive ligands was initiated by the release of organic ligands at various temperatures. On further heating of the compounds up to 400°C the thermal degradation of the benzoate anions took place. Zinc oxide was found as the final product of the thermal decomposition of all zinc(II) benzoate complex compounds heated to 600°C. Results of elemental analysis, infrared spectroscopy, mass spectroscopy and thermogravimetry are presented.  相似文献   

13.
Novel complexes of type [M2LCl4nH2O ((1) M:Ni, n = 5; (2) M:Cu, n = 0 and (3) M:Zn, n = 2; L: ligand resulted from 1,2-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde template condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR and UV–Vis data. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. Processes as water or hydrochloric acid elimination as well as oxidative degradation of the organic ligand were observed. Complexes display a different thermal behaviour as result of dissimilar chemical interaction of metal ions with chloride anions. The final product of decomposition was metal(II) oxide as powder X-ray diffraction indicated.  相似文献   

14.
Two lactates and four new mixed ligand complexes with formulae Co(lact)2·2H2O, Ni(lact)2·3H2O, Co(4-bpy)(lact)2, Co(2,4'-bpy)2(lact)2, Ni(4-bpy)(lact)2·2H2O and Ni(2,4'-bpy)2(lact)2 (where 4-bpy=4,4'-bipyridine, 2,4'-bpy=2,4'-bipyridine, lact=CH3CH(OH)COO-) were isolated and investigated. The thermal behaviour of compounds was studied by thermal analysis (TG, DTG, DTA). In the case of hydrated complexes thermal decomposition starts with the release of water molecules. The compounds decompose at high temperature to metal(II) oxides in air. A coupled TG-MS system was used to analyse the principal volatile products of thermolysis and fragmentation processes of obtained complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Tian  J.  Jiang  H.  Gong  H.  Sun  Z. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):825-831
Hydrated methanesulfonates Ln(CH3SO3)3·nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2·nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
New complexes of type [Cu(HTBG)2]Cl2 (1), [Cu(TBG)2]·3H2O (2) and [CuL]·nH2O (3) L:L1, n = 2 and (4) L:L2, n = 1 (HTBG: 2-tolylbiguanide, L1 and L2: ligands resulted from 2-tolylbiguanide, ammonia/hydrazine and formaldehyde one pot condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR and UV–Vis data. Redox behaviour was established by cyclic voltammetry. The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against Gram-negative and Gram-positive strains isolated from the hospital environment. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. After water elimination, complexes have a similar thermal behaviour. Processes as water elimination, melting, chloride anion removal as well as oxidative degradation of the organic ligands were observed. The final product of decomposition was copper (II) oxide.  相似文献   

17.
Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH2C2O3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH2C2O3) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N2 atmospheres.  相似文献   

18.
The chemical preparation, crystal structure and spectroscopic characterization of [2,6-(C2H5)2C6H3NH3]2H2P2O7 · 2H2O have been reported. The compound crystallizes in the monoclinic system in space group P21/c and cell parameters a = 14.323(2), b = 11.158(3), c = 16.387(2) ? and β = 96.34(3)°; V = 2602.8(9) ?3 and Z = 4. Crystal structure has been determined and refined to R = 0.044, using 3528 independent reflections. The atomic arrangement of the title compound shows anionic layer of formulae [H2P2O7(H2O)2] n 2n stacked along the c-axis. The 2,6-diethylanilinium cations establish on both sides of these inorganic layer hydrogen bonds so as to contribute to the intralayer cohesion in the network. The different building species are held together by means of O–H···O and N–H···O intermolecular hydrogen bonds in addition to electrostatic and van der Waals interactions.  相似文献   

19.
A series of energetic coordination compounds [Co(tza)2}n ( 1 ), [Bi(tza)3]n ( 2 ), {[Cu4(tza)6(OH)2] · 4H2O}n ( 3 ), [Mn(tza)2]n ( 4 ), {[Bi(tza)(C2O4)(H2O)] · H2O}n ( 5 ) and [Fe3O(tza)6(H2O)3]NO3 ( 6 ) based on tetrazole‐1‐acetic acid (Htza) were synthesized though environmentally friendly methods. The coordination compounds were characterized by elemental analyses, IR spectroscopy, single‐crystal and powder X‐ray diffraction (PXRD), thermogravimetric analyses (TG), and differential scanning calorimetry (DSC). Their catalytic performances and the synergetic catalytic effects between 1 and 2 , 3 and 4 , 5 and 6 on the thermal decomposition of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) were all investigated by DSC. The results revealed that compounds 1 – 6 are thermally stable energetic compounds and they all exhibit high catalytic action for HMX thermal decomposition. The catalytic effects of the compounds on HMX thermal decomposition are closely related to the oxides, which come from the decomposition of the compounds, but have no positive relationships with the heat releases of the compounds themselves. Moreover, the synergetic catalytic effects between 1 and 2 , 3 and 4 , 5 and 6 were observed. Their mixtures at different mass ratio have different synergetic catalytic effects, and the sequence of the biggest synergetic index (SI) in each system is copper‐manganese system (compounds 3 and 4 ) > iron‐bismuth system (compounds 5 and 6 ) > cobalt‐bismuth system (compounds 1 and 2 ), indicating that the synergistic catalytic effects are mainly related to the combination and the proportion of the compounds.  相似文献   

20.
This article describes the synthesis, structural features, and thermal studies of novel Mn(III) heterochelates of the type [Mn(SB n )(L)(H2O)]·xH2O [H2SB n  = Nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5 dihydro-1H-pyrazol-4yl)-acylidene]-hydrazide where acyl = acetyl (H2SB1); benzoyl (H2SB2); propionyl (H2SB3); buteryl (H2SB4); phenyl acetyl (H2SB5); and HL = 5-Chloro-7-iodo-8-hydroxyquinoline (clioquinol)]. The heterochelates have been characterized on the basis of elemental analyses, magnetic susceptibility measurements, cyclic voltammetric studies, (FTIR and electronic) spectra, and thermal studies. The FAB mass spectrum of [Mn(SB1)(L)H2O]·3H2O has been carried out. The cyclic voltammetric studies reveal that quasi-reversible reduction process of Mn(III)/Mn(II) coupled system suggesting that the ligands readily destabilize higher oxidation states of metal ion. Kinetic parameters such as order of reaction (n) and the energy of activation (Ea) were calculated using Freeman–Carroll method. The pre-exponential factor (A), the activation entropy (S*), the activation enthalpy (H*), and the free energy of activation (G*) were calculated using Horowitz–Metzger equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号