首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We study the quantum nature of the protons participating in hydrogen bonds in several ice structures by analyzing the one particle density matrix. We find that in all cases, including ice Ih, the most common form of ice, and the high pressure phases, ice VIII, VII, and X, the system is ground-state dominated. However, while the dynamics is uncorrelated in the structures with standard asymmetric hydrogen bonds, such as ice Ih and VIII, local correlations among the protons characterize ice VII and, to a lesser extent, ice X in the so-called low barrier hydrogen bond regime. The correlations appear along the path to hydrogen bond symmetrization, when quantum fluctuations delocalize the proton on the two bond sides. The correlations derive from a strong requirement for local charge neutrality that favors concerted motion along the bonds. The resulting behavior deviates substantially from mean field theory, which would predict in ice VII coherent tunneling of the proton between the two bond sides, thereby causing an ionization catastrophe. Due to the correlations, the quantum state of the proton is entangled.  相似文献   

2.
The momentum distribution of the protons in ice Ih, ice VI, high density amorphous ice, and water in carbon nanotubes has been measured using deep inelastic neutron scattering. We find that at 5 K the kinetic energy of the protons is 35 meV less than that in ice Ih at the same temperature, and the high momentum tail of the distribution, characteristic of the molecular covalent bond, is not present. We observe a phase transition between 230 and 268 K to a phase that does resemble ice Ih. Although there is yet no model for water that explains the low temperature momentum distribution, our data reveal that the protons in the hydrogen bonds are coherently delocalized and that the low temperature phase is a qualitatively new phase of ice.  相似文献   

3.
Adsorption of HOCl on ice surface was studied using the ab initio molecular orbtial theory. We applied Hartree–Fock (HF) self-consistent field and the second-order Møller–Plesset (MP2) level of theory to cluster models of the (0001) surface ice Ih to optimize adsorption structures and binding energies. In all stable binding configurations, HOCl acts as a proton donor in a hydrogen bond. The presence of neighboring water molecules can strengthen the interaction of HOCl with ice. In the HOCl·(H2O)4 system, interaction hydrogen bond length is about 1.85 Å, and binding energies are −10.063−11.149 kcal mol−1. We also calculated the vibrational frequencies of HOCl affected by the ice surface.  相似文献   

4.
水是生活中一种最基本且最重要的物质,由于它的一些奇特性质和反常物性,得到了广泛的研究,而拉曼光谱是研究水分子结构的一种非常合适的方法,它通过获得分子的振动和转动信息来理解分子结构和分子间的相互作用。在常压下测量了-20~-190 ℃温度范围内冰Ih相的表面薄层的拉曼光谱,实验结果发现随温度降低,冰Ih相的O∶H范德瓦尔斯键向高波数方向移动,而O-H极性共价键向低波数方向移动;且拉曼频移与温度呈线性关系,通过对不同振动模式的斜率进行比较,判断其键长的伸缩变化关系,从而证明了冰Ih相密度随温度的减小而增大,采用氢键理论(结构)给予了解释。同时,发现在-150 ℃时,O-H键反对称伸缩振动模式和O∶H键振动模式的拉曼峰强发生了突变,这表明冰Ih相发生了相变--冰Ⅺ相(冰Ih的质子有序相)。  相似文献   

5.
This paper presents a new approach for enumerating all hydrogen bond arrangements of ice-like systems with periodic boundary conditions. It is founded on a topological procedure for the dimensional reduction and a new variant of the transfer matrix method based on small conditional transfer matrices. We consider a couple of new two-dimensional ice models on very unusual lattices. One of them is the twisted square ice model with crossing H-bonds. The other is the digonal-hexagonal model with double H-bonds. In spite of their uncommonness, these models are quite realistic, because from the standpoint of combinatorics and topology they are equivalent to the layers of usual hexagonal ice Ih under periodic boundary conditions in one of the directions. The exact proton configuration statistics for a number of 2D-expanded unit cells of hexagonal ice Ih and the residual entropy of the new ice models in the large system limit are presented.  相似文献   

6.
Potential models which include charge transfer are used to study ice/water coexistence properties and properties of the ice Ih phase. Two charge transfer models are used, one which is non-polarizable and one which is polarizable. These models transfer a discreet amount of charge for each hydrogen bond made and the net charge of a molecule is determined by the difference in the number of hydrogen bonds a molecule makes as a donor and as an acceptor. In ice Ih, this difference is very near zero and the net amount of charge transfer is correspondingly essentially zero. This differs from the amount of charge transfer in the liquid phase. The results for the polarizable charge transfer model confirm other studies that suggest the importance of polarizability in reproducing the high dielectric constant of ice Ih.  相似文献   

7.
The structure of the proton sublattice of ice at an ice-metal interface is analyzed by solving the Ginzburg-Landau equation for an order parameter describing the proton ordering under an appropriate boundary condition [1, 2]. When the interaction between protons and the substrate is weak, the ice rules that govern proton order are weaker at the interface as compared to bulk ice, but to a lesser extent than at the free ice surface. In the case of strong proton-substrate interaction (clean interface and/or high conductivity of the substrate), the ice rules are stronger at the interface as compared to bulk ice, which corresponds to a more ordered proton sublattice. The latter case corresponds to a lower concentration of defects in the proton sublattice, which determine important properties of ice, such as adhesion, electrical conductivity, plasticity, and electric field distribution near the interface. A qualitative correlation is described between electrical properties of the substrate and mechanical properties of the interface, including adhesion and friction.  相似文献   

8.
The structure of water clusters (H2O)n (n = 40 -200) and bulk water were examined by molecular dynamics simulations using the TIP4P-ice water model. The analysis of the low-temperature structures in terms of the local structure index (LSI) showed a bimodal distribution. This finding supports the two-state picture derived from the analysis of the inherent dynamics of bulk SPC/E water. The water molecules at the outer interface of the coldest clusters are more structured than those in the inner core. The geometrical constraint of the interface forces the surface molecules to lose one neighbor and adopt a local angular distribution of hydrogen bonds resembling that found in the basal plane of ice Ih.  相似文献   

9.
Neutron diffraction with isotope substitution is used to determine the structures of high (HDA) and low (LDA) density amorphous ice. Both "phases" are fully hydrogen bonded, tetrahedral networks, with local order similarities between LDA and ice Ih, and HDA and liquid water. Moving from HDA, through liquid water and LDA to ice Ih, the second shell radial order increases at the expense of spatial order. This is linked to a fifth first neighbor "interstitial" that restricts the orientations of first shell waters. This "lynch pin" molecule which keeps the HDA structure intact has implications for the nature of the HDA-LDA transition that bear on the current metastable water debate.  相似文献   

10.
Abstract

The transitions of the recovered high-pressure phase ice VIII first to high-density amorphous (hda) and low-density amorphous ices, and finally to cubic Ic, and hexagonal Ih ice were observed at heating using real-time neutron diffraction. Inelastic incoherent neutron scattering measurements on the hdu ice, ice Ih and high-pressure phase ice VI revealed similarity between the amorphous phase and crystalline ice VI and led to the new proposition that hda ice consists of two interpenetrating hydrogen-bounded networks with no hydrogen bonds between “sublattices”.  相似文献   

11.
董顺乐  王燕  李琪 《中国物理》2001,10(10):951-957
Lattice dynamical calculations of ice VIII have been carried out by using a slightly modified set of force constants obtained recently for ice Ih (Li J C and Ross D K 1993 Nature 365 327). A weak interaction was introduced between the two interpenetrated sublattices in the ice VIII structure. The calculated results for H2O and D2O ice VIII are in reasonable agreement with the measured inelastic neutron scattering spectra. The eigenvectors of phonon modes in the range of translational and librational bands have been studied in order to understand the properties of the vibrational modes. It is found that the third peak at 26.7meV in the translation results from weak hydrogen bond interactions, and the first peak (14.7meV) is much higher than it is in ice Ih (~7.1meV), which is partially due to the interactions between the two sublattices.  相似文献   

12.
By means of Level Crossing Resonance in a sample of ice which is enriched in H2 17O, the final diamagnetic state of implanted positive muons is determined to be the muonium-substituted molecule HMuO, accommodated in the regular and fully relaxed Ih structure. The17O quadrupole coupling constant is measured to be 6.1 MHz at 200 K assuming an asymmetry parameter close to unity, a decrease of about 5% relative to that in normal ice Ih at 77 K. The isotope effect is attributed to a greater polarization in the vicinity of a muonium (as opposed to a normal hydrogen) bond. At 50 K, an additional resonance is observed which could correspond to a precursor state, so far not definitely identified. One possibility is a muon trapped at a Bjerrum L-defect, giving a {H2O−Mu−OH2}+ species with an,17O quadrupole coupling constant of 8.2 MHz and asymmetry parameter of 0.55. Above this temperature, the fall in the (Gaussian) line-width parameter is attributed to the increasing rate of proton or muon migration, the correlation time dropping from 4 μs at 80 K to 1 μs near the melting-point. The increase in the diamagnetic fraction with rise in temperature is attributed to the increasing proportion of trapping sites available for muon capture.  相似文献   

13.
The effects of pressure on the structure of ice XI-an ordered form of the phase of ice Ih, which is known to amorphize under pressure-are investigated theoretically using density-functional theory. We find that pressure induces a mechanical instability, which is initiated by the softening of an acoustic phonon occurring at an incommensurate wavelength, followed by the collapse of the entire acoustic band and by the violation of the Born stability criteria. It is argued that phonon collapse may be a quite general feature of pressure-induced amorphization. The implications of our findings for the amorphization of ice Ih are also discussed.  相似文献   

14.
The state of the surface of amorphous ice with a specific surface area of about 160 m2/g obtained by the condensation of water vapor at 77 K is studied by IR spectroscopy. As the temperature increases to 130–160 K, absorption bands of surface hydroxyl groups vanish, whereas changes in bands characteristic of hydroxyl groups in the bulk of ice are indicative of a phase transition of ice from amorphous to the polycrystalline structure. The surface sites of amorphous ice are characterized with low-temperature adsorption of carbon monoxide. It is shown that there are two types of CO adsorption sites, free hydroxyl groups and oxygen atoms of surface coordinately unsaturated water molecules. Upon adsorption of nitrogen, methane, and carbon monoxide, in addition to the perturbation of surface OH groups, reversible changes in the spectrum are observed in the region of vibrations of bulk hydroxyls, which indicate that the strength of hydrogen bonds between water molecules in the surface layer of icy particles increases approaching the strength of these bonds in the crystal and that the ice surface becomes less amorphous. These results indicate that the properties of the ice surface layer substantially depend on the presence of adsorbed molecules.  相似文献   

15.
张鹏  刘扬  于惠  韩圣浩  吕英波  吕茂水  丛伟艳 《中国物理 B》2014,23(2):26103-026103
In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange-correlation based on ab initio density functional theory. The strength of the H-bond is correlated with intramolecular O-H stretching, and the energy splitting exists for both the H-bond and covalent O-H stretching. By analyzing the dispersion relationship of to(q), we observe the separation of the longitudinal optic (LO) mode from transverse optic (TO) mode at the gamma point, seemingly interpreting the controversial two H-bond peaks in the vibrational spectrum of ice recorded by inelastic incoherent neutron scattering experiments. The test of ambient environment on phonon density of sates (PDOS) shows that the relaxed tetrahedral structure is the most stable structural configuration for water clusters.  相似文献   

16.
Oxygen K-edge x-ray absorption spectra of high-density amorphous (HDA) ice, low-density amorphous ice Ic, ice Ih, normal and deuterated liquid water were measured with the synchrotron x-ray Raman scattering method under almost identical experimental conditions by in situ heating of an HDA ice sample. The distinct preedge structure previously reported in water was observed in all the spectra. The results show that core-hole excitations are localized and not strongly affected by the local environment. Therefore, the existence of the preedge feature is not a concise indicator of the magnitude of local disorder within the hydrogen bonded network. The intensity of the near-edge absorption shifts into the postedge region when the hydrogen bond network becomes more ordered. This observation is interpreted as an enhancement of Wannier over Frenkel excitations in an ordered crystal.  相似文献   

17.
We present a first-principles study of the molecular vacancy and three distinct molecular interstitial structures in ice Ih. The results indicate that, due to its bonding to the surrounding hydrogen-bond network, the bond-center (Bc) configuration is the favored molecular interstitial in ice Ih. A comparison between the vacancy and the Bc interstitial suggests that the former is the predominant molecular point defect for T approximately < 200K although a crossover scenario in which the latter becomes favored below the melting point is conceivable.  相似文献   

18.
This paper addresses a hydrogen outgassing mechanism in titanium materials with extremely low outgassing property by investigating the distribution of hydrogen atoms concentration in depth below the surface, and the activation energy for desorption of dissolved hydrogen atoms into the boundary region between the surface oxide layer and the bulk titanium and that of adsorbed hydrogen atoms on the surface. The distribution of hydrogen atoms concentration in depth below the surface was analyzed by a time-of-flight secondary ion mass spectrometry (TOF-SIMS). The activation energy for desorption of dissolved hydrogen atoms was estimated by the thermal desorption spectroscopy (TDS) measurement with various heating rates. The activation energy for desorption of adsorbed hydrogen atoms was estimated by the temperature dependence of the outgassing rate in titanium material. In the titanium material, hydrogen atoms show maximum concentration at the boundary between the surface oxide layer and the bulk titanium. Concentration of hydrogen atoms decreases rapidly at the surface oxide layer, while it decreases slowly in the deep region below the surface layer-bulk boundary by the vacuum evacuation without/with the baking process. The activation energy for desorption of 1.02 eV of dissolved hydrogen atoms into the surface layer-bulk boundary is about three times as large as that of 0.38 eV of the adsorbed hydrogen atoms on the surface. These results suggest that the hydrogen outgassing mechanism in the titanium material is composed the follows processes, i.e. the slow hydrogen atoms diffusion at the surface layer-bulk boundary, quick hydrogen atoms diffusion at the surface oxide layer and rapid desorption of adsorbed hydrogen atoms on the surface. This outgassing mechanism gives very low hydrogen concentration near the surface, which results in the extremely low outgassing rate in titanium materials.  相似文献   

19.
Thermodynamic conditions of existence in the p-T plane and the composition of neon hydrates based on ices Ih and II are determined. The occupancy of neon in cages (channels) of ices Ih and II at temperatures below 0°C is calculated. It is shown that the occupancy of neon in hydrate based on ices cages decreases with growing temperature. Lines of monovariant equilibria between gas phase (neon)-neon hydrate based on ice Ih-liquid water (or ice II) and neon-gas phase (neon)-hydrate based on ice II-liquidwater (or ice II) are found. The line of divariant equilibria between neon hydrate based on ice Ih-neon hydrate based on ice II has been also calculated. The possibility of ice stabilization due to inclusion of neon into ice cages (channels) is shown.  相似文献   

20.
We present a first-principles study of the structure and energetics of Bjerrum defects in ice Ih and compare the results to experimental electrical conductivity data. While the DFT result for the activation energy is in good agreement with experiment, we find that its two components have quite different values. Aside from providing new insight into the fundamental parameters of the microscopic electrical theory of ice, our results suggest the activity of traps in doped ice in the temperature regime typically assumed to be controlled by the free migration of L defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号