首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The detection and structural characterization of the components of a mixture is a challenging task. Therefore, the development of a facile and general method that enables both the separation and the structural characterization of the components is desired. Diffusion‐ordered NMR spectroscopy (DOSY) with the aid of a matrix is a promising tool for this purpose. However, because the currently existing matrices only separate limited components, the application of the DOSY technique is restricted. Herein we introduce a new versatile matrix, poly(dimethylsiloxane), which can fully separate many mixtures of different structural types by liquid‐state NMR spectroscopy. With poly(dimethylsiloxane), liquid‐state chromatographic NMR spectroscopy could become a general approach for the structural elucidation of mixtures of compounds.  相似文献   

2.
Diffusion‐ordered spectroscopy (DOSY) is an effective method for the analysis of intact mixtures, but the quality of results is critically limited by resolution in the NMR dimension. A new experiment integrating diffusion weighting into the PSYCHE method for pure shift NMR spectroscopy allows DOSY spectra to be measured with ultrahigh NMR resolution at improved sensitivity.  相似文献   

3.
A convenient DOSY methodology was developed that can be applied directly in crude reaction products or mixtures containing polyphenol organic compounds, for the rapid identification of their various components without any prior separation or isolation. The method is based on the resolution enhancement of the resonances of the –OH protons and the fine-tuning of their diffusion coefficients to the molecular diffusion coefficient; this can be achieved in DMSO-d6 in combination with the addition of picric acid and the use of temperatures near the freezing point of the solution. This method, which does not modify the apparent molecular diffusion, allowed the recording of high resolution DOSY spectra, both in crude enzymatic reactions and mixtures of organic compounds based on the phenolic OH NMR spectral region which is much less crowded and, thus, much more informative compared to the aromatic region.  相似文献   

4.
Diffusion-ordered spectroscopy (DOSY) is a powerful tool for investigating mixtures and identifying peaks of chemical components. However, similar diffusion coefficients of the components, particularly for complex mixtures that contain crowded resonances, limit resolution and restrict application of the DOSY technique. In this paper, matrix-assisted DOSY were used to explore whether the diffusion resolution of a complex model involving indole alkaloid mixtures can be realized. Furthermore, we investigated the influence of different factors on the separation effect. The results showed that the changes in diffusion coefficient differences were achieved more obviously when using sodium dodecyl sulfate (SDS) micelles as the matrix. In addition, we also found that increasing the concentration of SDS can improve the resolution of the DOSY spectrum. Finally, after investigating the influence factors and NMR conditions, we demonstrated the applications of the SDS-assisted DOSY on analyzing the total alkaloid extract of Alstonia Mairei, and the virtual separation of mixtures was achieved.  相似文献   

5.
Diffusion‐ordered NMR spectroscopy resolves mixture components on the basis of differences in their respective diffusion coefficients or molecular sizes. However, when components have near‐identical diffusion coefficients, they are not resolved in the diffusion dimension of a diffusion‐ordered spectroscopy (DOSY) spectrum. Adding surfactant micelles to these mixtures has been shown to enhance resolution when the component molecules interact differentially with the micelles. This approach is similar to that used in electrokinetic chromatography (EKC) where modifiers like micelles or polymers are used to enhance the separation of mixture components. In this study, perdeuterated surfactants are added to analyte mixtures studied with the DOSY technique. Since no micelle resonances appear in the mixture spectra, the difficulty associated with performing biexponential analyses in spectral regions where analyte and surfactant resonances overlap is avoided. The approach is demonstrated using mixtures of peptides with near‐identical diffusion coefficients. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
High resolution diffusion-ordered NMR spectroscopy allows the separation of signals from different species based on their diffusion coefficients. In general this requires that the NMR spectra of the components do not have overlapping signals, and that the diffusion coefficients are significantly different. Modifying the solvent matrix in which a sample is dissolved can change the diffusion coefficients observed, allowing resolution ("matrix-assisted DOSY"). We show here that dissolving the two naturally-occurring epimers of naringin in an aqueous solution of β-cyclodextrin causes both shift and diffusion changes, allowing the signals of the epimers to be distinguished. Chiral matrix-assisted DOSY has the potential to allow simple resolution and assignment of the spectra of epimers and enantiomers, without the need for derivatisation or for titration with a shift reagent.  相似文献   

7.
Diffusion ordered spectroscopy (DOSY) is used to determine the translational diffusion coefficients of molecules in solution. However, DOSY is highly susceptible to spurious spectral peaks resulting from thermal convection occurring in the NMR tube. Thermal convection therefore must be suppressed for accurate estimation of translational diffusion coefficients. In this study, we developed a new method to effectively suppress thermal convection using glass capillaries. A total of 6 to 18 capillaries (0.8‐mm outer diameter) were inserted into a regular 5‐mm NMR tube. The capillaries had minimal effect on magnetic field homogeneity and enabled us to obtain clean DOSY spectra of a mixture of small organic compounds. Moreover, the capillaries did not affect chemical shifts or signal intensities in two‐dimensional heteronuclear single quantum coherence spectra. Capillaries are a simple and inexpensive means of suppressing thermal convection and thus can be used in a wide variety of DOSY experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Diffusion-ordered spectroscopy (DOSY) is an important tool in NMR mixture analysis that has found use in most areas of chemistry, including organic synthesis, drug discovery, and supramolecular chemistry. Typically the aim is to disentangle the overlaid, and often overlapped, NMR spectra of individual mixture components and/or to obtain size and interaction information from their respective diffusion coefficients. The most common processing method, high-resolution DOSY, breaks down where component spectra overlap; here multivariate methods can be very effective, but only for small numbers (2-5) of components. In this study, we present a hybrid method, local covariance order DOSY (LOCODOSY), that breaks a spectral data set into suitable windows and analyzes each individually before combining the results. This approach uses a multivariate algorithm (e.g., SCORE or DECRA) to resolve only a small number of components in any given window. Because a small spectral region should contain signals from only a few components, even when the spectrum as a whole contains many more, the total number of resolvable chemical components rises dramatically. It is demonstrated here that complete resolution of component spectra can be achieved for mixtures that are much more complex than could previously be analyzed with DOSY. Thus, LOCODOSY is a powerful, flexible tool for processing NMR diffusion data of complex mixtures.  相似文献   

9.
The structure of microemulsions prepared by the anionic gemini surfactant didodecyl diphenyl ether disulfonate (C12-DADS) was investigated by a solvatochromic probe and nuclear magnetic resonance (NMR) diffusion measurements. The NMR measurements indicate the presence of bicontinuous and oil-in-water microemulsions depending on microemulsion composition. The absorbance spectra of the solvatochromic probe, Nile red, indicate the solubilization of the probe in different sites, in agreement with the NMR findings. It was also found that the microemulsions were capable of dissolving the hydrophobic probe, Nile red, up to four times better than expected if it were simply dissolved in the toluene phase.  相似文献   

10.
DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes’ diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low‐micromolar mixtures, thus reducing the concentration requirements by at least 100‐fold.  相似文献   

11.
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion‐ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC‐NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.  相似文献   

12.
DOSY is a recognized, efficient technique in the analysis of mixtures. It relies on the differences in self-diffusion coefficients, which are determined by the molecular size. Nowadays, efforts are directed towards devising matrices able to interact with the components of the mixture with differential affinity, and therefore capable to interfere with the diffusion processes and to display resolving power towards species of close, or even equal molecular weight, like isomers. Usually, commercial nonionic surfactants are mixtures of oligomeric species, since the head group, which is a short polyoxyehtylene chain, is somewhat polydisperse. The embedment of Igepal CA-520, 5 polyoxyethylene iso-octylphenyl ether, in an inverse microemulsion led to the separation of (1)H signals of the various oligomeric components. This ensued from the differential partitioning between the oil and the surface of the inverse micelles, which depends on the ethyleneoxide number (EON) of the head groups. Thus, it was possible to ascertain that the length distribution of the polyethyleneoxide chains is ingood agreement with the Poisson distribution theoretically predicted for the polymerization of ethylene oxide. The DOSY spectrum contributed to the assignment of the signals and afforded the partition degree, between the two environments, for each individual oligomeric species, providing further insight into nonionic inverse microemulsions, at present widely employed reaction media in the nanotechnological syntheses.  相似文献   

13.
Biocompatible lipidic formulations: phase behavior and microstructure   总被引:1,自引:0,他引:1  
Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation.  相似文献   

14.
Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room‐temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. 1H, 11B, and 19F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X‐100 (TX‐100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim]+ and [BF4]? in the presence of TX‐100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim]+ and [BF4]? and migration of Cl? within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.  相似文献   

15.
Diffusion-ordered spectroscopy (DOSY) NMR is based on a pulse-field gradient spin-echo NMR experiment, in which components experience diffusion. Consequently, the signal of each component decays with different diffusion rates as the gradient strength increases, constructing a bilinear NMR data set of a mixture. By calculating the diffusion coefficient for each component, it is possible to obtain a two-dimensional NMR spectrum: one dimension is for the conventional chemical shift and the other for the diffusion coefficient. The most interesting point is that this two-dimensional NMR allows non-invasive “chromatography” to obtain the pure spectrum for each component, providing a possible alternative for LC-NMR that is more expensive and time-consuming. Potential applications of DOSY NMR include identification of the components and impurities in complex mixtures, such as body fluids, or reaction mixtures, and technical or commercial products, e.g. comprising polymers or surfactants.

Data processing is the most important step to interpret DOSY NMR. Single channel methods and multivariate methods have been proposed for the data processing but all of them have difficulties when applied to real-world cases. The big challenge appears when dealing with more complex samples, e.g. components with small differences in diffusion coefficients, or severely overlapping in the chemical shift dimension. Two single channel methods, including SPLMOD and continuous diffusion coefficient (CONTIN), and two multivariate methods, called direct exponential curve resolution algorithm (DECRA) and multivariate curve resolution (MCR), are critically evaluated by simulated and real DOSY data sets. The assessments in this paper indicate the possible improvement of the DOSY data processing by applying iterative principal component analysis (IPCA) followed by MCR-alternating least square (MCR-ALS).  相似文献   


16.
Online monitoring by flow NMR spectroscopy is a powerful approach to study chemical reactions and processes, which can provide mechanistic understanding, and drive optimisations. However, some of the most useful methods for mixture analysis and reaction monitoring are not directly applicable in flow conditions. This is the case of classic diffusion-ordered NMR spectroscopy (DOSY) methods, which can be used to separate the spectral information for mixture's components. We describe a fast and flow-compatible diffusion NMR experiment that makes it possible to collect accurate diffusion data for samples flowing at up to 3 mL/min. We use it to monitor the synthesis of a Schiff base with a flow-tube with a time resolution of approximately 2 minutes. The one-shot flow-compatible diffusion NMR described here open many avenues for reaction monitoring applications.  相似文献   

17.
State-of-the-art technologies and methodologies in NMR spectroscopy make it possible to obtain very informative and high-quality spectra in much less experimental time than classical methods by making better choices of NMR pulse sequences and acquisition parameters. This review presents some recent NMR methods allowing rapid identification, assignment and structural characterization of the components in mixtures. The relative merits of the different NMR pulse sequences are briefly discussed and recommendations are made for the preferred choice of sequences to obtain rapidly artifact-free data. This review covers diffusion experiments (DOSY), HSQC and HMBC experiments, ultra-resolved 2D spectra exploiting the property of aliasing and NOESY/ROESY experiments. It will be in particular shown that selective 1D NOESY/ROESY sequences can be more informative and reach higher resolution in less experimental time than the corresponding 2D sequences.  相似文献   

18.
Diffusion‐ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix‐assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co‐solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548–4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over which matrix‐assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool for mixture analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
张芳  于贤勇  陈忠  林深  刘世雄 《结构化学》2003,22(3):287-292
1 INTRODUCTION Metallacrown has emerged as inorganic host molecules. There has been considerable interest in metallacrown chemistry owing to its potential applications in chemically modified electrodes, anion-selective separation agents, liquid-crystal precursors and magnetic materials[1]. Multidentate ligands which can bridge two metal ions are used to synthesize metallacrowns. The cyclic repetition of the ligand bridging two metal ions generates the macrocyclic metal cluster. In the c…  相似文献   

20.
In the context of prebiotic chemistry, one of the characteristics of mixed nitrogenous‐oxygenous chemistry is its propensity to give rise to highly complex reaction mixtures. There is therefore an urgent need to develop improved spectroscopic techniques if onerous chromatographic separations are to be avoided. One potential avenue is the combination of pure shift methodology, in which NMR spectra are measured with greatly improved resolution by suppressing multiplet structure, with diffusion‐ordered spectroscopy, in which NMR signals from different species are distinguished through their different rates of diffusion. Such a combination has the added advantage of working with intact mixtures, allowing analyses to be carried out without perturbing mixtures in which chemical entities are part of a network of reactions in equilibrium. As part of a systems chemistry approach towards investigating the self‐assembly of potentially prebiotic small molecules, we have analysed the complex mixture arising from mixing glycolaldehyde and cyanamide, in a first application of pure shift DOSY NMR to the characterisation of a partially unknown reaction composition. The work presented illustrates the potential of pure shift DOSY to be applied to chemistries that give rise to mixtures of compounds in which the NMR signal resolution is poor. The direct formation of potential RNA and TNA nucleoside precursors, amongst other adducts, was observed. These preliminary observations may have implications for the potentially prebiotic assembly chemistry of pyrimidine threonucleotides, and therefore of TNA, by using recently reported chemistries that yield the activated pyridimidine ribonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号