首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Diffusion‐ordered spectroscopy (DOSY) is an effective method for the analysis of intact mixtures, but the quality of results is critically limited by resolution in the NMR dimension. A new experiment integrating diffusion weighting into the PSYCHE method for pure shift NMR spectroscopy allows DOSY spectra to be measured with ultrahigh NMR resolution at improved sensitivity.  相似文献   

2.
Diffusion-ordered spectroscopy (DOSY) NMR is based on a pulse-field gradient spin-echo NMR experiment, in which components experience diffusion. Consequently, the signal of each component decays with different diffusion rates as the gradient strength increases, constructing a bilinear NMR data set of a mixture. By calculating the diffusion coefficient for each component, it is possible to obtain a two-dimensional NMR spectrum: one dimension is for the conventional chemical shift and the other for the diffusion coefficient. The most interesting point is that this two-dimensional NMR allows non-invasive “chromatography” to obtain the pure spectrum for each component, providing a possible alternative for LC-NMR that is more expensive and time-consuming. Potential applications of DOSY NMR include identification of the components and impurities in complex mixtures, such as body fluids, or reaction mixtures, and technical or commercial products, e.g. comprising polymers or surfactants.

Data processing is the most important step to interpret DOSY NMR. Single channel methods and multivariate methods have been proposed for the data processing but all of them have difficulties when applied to real-world cases. The big challenge appears when dealing with more complex samples, e.g. components with small differences in diffusion coefficients, or severely overlapping in the chemical shift dimension. Two single channel methods, including SPLMOD and continuous diffusion coefficient (CONTIN), and two multivariate methods, called direct exponential curve resolution algorithm (DECRA) and multivariate curve resolution (MCR), are critically evaluated by simulated and real DOSY data sets. The assessments in this paper indicate the possible improvement of the DOSY data processing by applying iterative principal component analysis (IPCA) followed by MCR-alternating least square (MCR-ALS).  相似文献   


3.
High resolution diffusion-ordered NMR spectroscopy allows the separation of signals from different species based on their diffusion coefficients. In general this requires that the NMR spectra of the components do not have overlapping signals, and that the diffusion coefficients are significantly different. Modifying the solvent matrix in which a sample is dissolved can change the diffusion coefficients observed, allowing resolution ("matrix-assisted DOSY"). We show here that dissolving the two naturally-occurring epimers of naringin in an aqueous solution of β-cyclodextrin causes both shift and diffusion changes, allowing the signals of the epimers to be distinguished. Chiral matrix-assisted DOSY has the potential to allow simple resolution and assignment of the spectra of epimers and enantiomers, without the need for derivatisation or for titration with a shift reagent.  相似文献   

4.
DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes’ diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low‐micromolar mixtures, thus reducing the concentration requirements by at least 100‐fold.  相似文献   

5.
Diffusion-ordered spectroscopy (DOSY) is an important tool in NMR mixture analysis that has found use in most areas of chemistry, including organic synthesis, drug discovery, and supramolecular chemistry. Typically the aim is to disentangle the overlaid, and often overlapped, NMR spectra of individual mixture components and/or to obtain size and interaction information from their respective diffusion coefficients. The most common processing method, high-resolution DOSY, breaks down where component spectra overlap; here multivariate methods can be very effective, but only for small numbers (2-5) of components. In this study, we present a hybrid method, local covariance order DOSY (LOCODOSY), that breaks a spectral data set into suitable windows and analyzes each individually before combining the results. This approach uses a multivariate algorithm (e.g., SCORE or DECRA) to resolve only a small number of components in any given window. Because a small spectral region should contain signals from only a few components, even when the spectrum as a whole contains many more, the total number of resolvable chemical components rises dramatically. It is demonstrated here that complete resolution of component spectra can be achieved for mixtures that are much more complex than could previously be analyzed with DOSY. Thus, LOCODOSY is a powerful, flexible tool for processing NMR diffusion data of complex mixtures.  相似文献   

6.
Diffusion‐ordered NMR spectroscopy resolves mixture components on the basis of differences in their respective diffusion coefficients or molecular sizes. However, when components have near‐identical diffusion coefficients, they are not resolved in the diffusion dimension of a diffusion‐ordered spectroscopy (DOSY) spectrum. Adding surfactant micelles to these mixtures has been shown to enhance resolution when the component molecules interact differentially with the micelles. This approach is similar to that used in electrokinetic chromatography (EKC) where modifiers like micelles or polymers are used to enhance the separation of mixture components. In this study, perdeuterated surfactants are added to analyte mixtures studied with the DOSY technique. Since no micelle resonances appear in the mixture spectra, the difficulty associated with performing biexponential analyses in spectral regions where analyte and surfactant resonances overlap is avoided. The approach is demonstrated using mixtures of peptides with near‐identical diffusion coefficients. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Diffusion-ordered spectroscopy (DOSY) is a powerful tool for investigating mixtures and identifying peaks of chemical components. However, similar diffusion coefficients of the components, particularly for complex mixtures that contain crowded resonances, limit resolution and restrict application of the DOSY technique. In this paper, matrix-assisted DOSY were used to explore whether the diffusion resolution of a complex model involving indole alkaloid mixtures can be realized. Furthermore, we investigated the influence of different factors on the separation effect. The results showed that the changes in diffusion coefficient differences were achieved more obviously when using sodium dodecyl sulfate (SDS) micelles as the matrix. In addition, we also found that increasing the concentration of SDS can improve the resolution of the DOSY spectrum. Finally, after investigating the influence factors and NMR conditions, we demonstrated the applications of the SDS-assisted DOSY on analyzing the total alkaloid extract of Alstonia Mairei, and the virtual separation of mixtures was achieved.  相似文献   

8.
Diffusion‐ordered spectroscopy (DOSY) is an important technique for separating the NMR signals of the components in a mixture, and relies on differences in diffusion coefficient. Standard DOSY experiments therefore struggle when the components of a mixture are of similar size, and hence diffuse at similar rates. Fortunately, the diffusion coefficients of solutes can be manipulated by changing the matrix in which they diffuse, using matrix components that interact differentially with them, a technique known as matrix‐assisted DOSY. In the present investigation, we evaluate the performance of a number of new, previously used, and mixed matrices with an informative test mixture: the three positional isomers of dihydroxybenzene. The aim of this work is to present the matrix‐assisted DOSY user with information about the potential utility of a set of matrices (and combinations of matrices), including ionic and non‐ionic surfactants, complexing agents, polymers, and mixed solvents. A variety of matrices improved the diffusion resolution of the signals of the test system, with the best separation achieved by mixed micelles of sodium dodecyl sulfate and cetyl trimethylammonium bromide. The use of mixed matrices offers great potential for the analyst to tailor the matrix to a particular sample under study. © 2016 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons, Ltd.  相似文献   

9.
NMR spectroscopy is an excellent tool for structural analysis of pure compounds. However, for mixtures, it performs poorly because of overlapping signals. Diffusion ordered NMR spectroscopy (DOSY) can be used to separate the spectra of compounds with widely differing molecular weights, but the separation is usually insufficient. NMR "chromatographic" methods have been developed to increase the diffusion separation but these usually introduced solids into the NMR sample that reduce resolution. Using nanostructured dispersed media, such as microemulsions, eliminates the need for suspensions of solids and brings NMR chromatography into the mainstream of NMR analytical techniques. DOSY was used in this study to resolve spectra of mixtures with no increase in line-width as compared to regular solutions. Components of a mixture are differentially dissolved into the separate phases of the microemulsions. Several examples of previously reported microemulsions and those specifically developed for this purpose were used here. These include a fully dilutable microemulsion, a fluorinated microemulsion, and a fully deuterated microemulsion. Log(diffusion) difference enhancements of up to 1.7 orders of magnitude were observed for compounds that have similar diffusion rates in conventional solvents. Examples of commercial pharmaceutical drugs were also analyzed via this new technique, and the spectra of up to six components were resolved from one sample.  相似文献   

10.
We report on a detailed NMR spectroscopic study of the catalyst‐substrate interaction of a highly enantioselective oligopeptide catalyst that is used for the kinetic resolution of trans‐cycloalkane‐1,2‐diols via monoacylation. The extraordinary selectivity has been rationalized by molecular dynamics as well as density functional theory (DFT) computations. Herein we describe the conformational analysis of the organocatalyst studied by a combination of nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC)‐based methods that resulted in an ensemble of four final conformers. To corroborate the proposed mechanism, we also investigated the catalyst in mixtures with both trans‐cyclohexane‐1,2‐diol enantiomers separately, using advanced NMR methods such as T1 relaxation time and diffusion‐ordered spectroscopy (DOSY) measurements to probe molecular aggregation. We determined intramolecular distance changes within the catalyst after diol addition from quantitative NOE data. Finally, we developed a pure shift EASY ROESY experiment using PSYCHE homodecoupling to directly observe intermolecular NOE contacts between the trans‐1,2‐diol and the cyclohexyl moiety of the catalyst hidden by spectral overlap in conventional spectra. All experimental NMR data support the results proposed by earlier computations including the proposed key role of dispersion interaction.  相似文献   

11.
The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells.

The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life.  相似文献   

12.
A convenient DOSY methodology was developed that can be applied directly in crude reaction products or mixtures containing polyphenol organic compounds, for the rapid identification of their various components without any prior separation or isolation. The method is based on the resolution enhancement of the resonances of the –OH protons and the fine-tuning of their diffusion coefficients to the molecular diffusion coefficient; this can be achieved in DMSO-d6 in combination with the addition of picric acid and the use of temperatures near the freezing point of the solution. This method, which does not modify the apparent molecular diffusion, allowed the recording of high resolution DOSY spectra, both in crude enzymatic reactions and mixtures of organic compounds based on the phenolic OH NMR spectral region which is much less crowded and, thus, much more informative compared to the aromatic region.  相似文献   

13.
Diffusion ordered spectroscopy (DOSY) is used to determine the translational diffusion coefficients of molecules in solution. However, DOSY is highly susceptible to spurious spectral peaks resulting from thermal convection occurring in the NMR tube. Thermal convection therefore must be suppressed for accurate estimation of translational diffusion coefficients. In this study, we developed a new method to effectively suppress thermal convection using glass capillaries. A total of 6 to 18 capillaries (0.8‐mm outer diameter) were inserted into a regular 5‐mm NMR tube. The capillaries had minimal effect on magnetic field homogeneity and enabled us to obtain clean DOSY spectra of a mixture of small organic compounds. Moreover, the capillaries did not affect chemical shifts or signal intensities in two‐dimensional heteronuclear single quantum coherence spectra. Capillaries are a simple and inexpensive means of suppressing thermal convection and thus can be used in a wide variety of DOSY experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
NMR analysis of complex mixtures can be significantly simplified using polyethyleneglycol (PEG) as resolving additive in DOSY NMR technique, which allows the extraction of individual spectra of mixture components with differing polarity. Resolving power of PEG‐assisted DOSY was demonstrated with natural product mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The detection and structural characterization of the components of a mixture is a challenging task. Therefore, the development of a facile and general method that enables both the separation and the structural characterization of the components is desired. Diffusion‐ordered NMR spectroscopy (DOSY) with the aid of a matrix is a promising tool for this purpose. However, because the currently existing matrices only separate limited components, the application of the DOSY technique is restricted. Herein we introduce a new versatile matrix, poly(dimethylsiloxane), which can fully separate many mixtures of different structural types by liquid‐state NMR spectroscopy. With poly(dimethylsiloxane), liquid‐state chromatographic NMR spectroscopy could become a general approach for the structural elucidation of mixtures of compounds.  相似文献   

16.
Herein, we present the results obtained from our studies on supramolecular self‐assembly and molecular mobility of low‐molecular‐weight gelators (LMWGs) in organic solvents using pulsed field gradient (PFG) diffusion ordered spectroscopy (DOSY) NMR. A series of concentration‐dependent DOSY NMR experiments were performed on selected LMWGs to determine the critical gelation concentration (CGC) as well as to understand the behaviour of the gelator molecules in the gel state. In addition, variable‐temperature DOSY NMR experiments were performed to determine the gel‐to‐sol transition. The PFG NMR experiments performed as a function of gradient strength were further analyzed using monoexponential DOSY processing, and the results were compared with the automated Bayesian DOSY transformation to obtain 2D plots. Our results provide useful information on the stepwise self‐assembly of small molecules leading to gelation. We believe that the results obtained from these experiments are applicable in determining the CGC and gel melting temperatures of supramolecular gels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The technical and practical aspects of 19F NMR‐based screening against a macromolecular target are analyzed in detail. A novel method utilizing the relaxation of 19F homonuclear double quantum coherence is proposed for performing NMR‐based binding assays in a direct‐ or competition‐mode format. A combined strategy based on 19F NMR chemical shift prediction, 2D 19F NMR DOSY, and 2D 19F–1H NMR long‐range COSY experiments is presented for the deconvolution of complex mixtures of fluorinated molecules generated by either addition of single compounds or by chemical synthesis. The approaches presented here allow the screening of complex mixtures, even in the case where the exact composition is not known, and the rapid identification of the binders contained in the mixtures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion‐ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC‐NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.  相似文献   

19.
An improved constant time gradient HSQC–iDOSY pulse sequence is presented, and the corresponding form of the Stejskal–Tanner equation is derived. The pulse sequence is particularly well suited to the problem of analysing mixtures of chemically cognate species, where the high spectral resolution afforded by 1H? 13C correlation methods is needed for DOSY experiments to give good diffusion resolution. Its use is illustrated for a mixture of rutin and its aglycone quercetin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
State-of-the-art technologies and methodologies in NMR spectroscopy make it possible to obtain very informative and high-quality spectra in much less experimental time than classical methods by making better choices of NMR pulse sequences and acquisition parameters. This review presents some recent NMR methods allowing rapid identification, assignment and structural characterization of the components in mixtures. The relative merits of the different NMR pulse sequences are briefly discussed and recommendations are made for the preferred choice of sequences to obtain rapidly artifact-free data. This review covers diffusion experiments (DOSY), HSQC and HMBC experiments, ultra-resolved 2D spectra exploiting the property of aliasing and NOESY/ROESY experiments. It will be in particular shown that selective 1D NOESY/ROESY sequences can be more informative and reach higher resolution in less experimental time than the corresponding 2D sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号