首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We present a theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is, however, a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons near in energy to each bright exciton. Both effects strongly influence measured lifetime. Assuming a thermal occupation of bright and dark exciton bands, we find an effective lifetime of the order of 10 ns at room temperature, in good accord with recent experiments.  相似文献   

2.
We report studies of the temperature dependence of the photoluminescence efficiency of single walled carbon nanotubes which demonstrate the role of bright and dark excitons. This is determined by the energy splitting of the excitons combined with 1-D excitonic properties. The splitting of the bright and dark singlet exciton states is found to be only a few meV and is very strongly diameter dependent for diameters in the range 0.8-1.2 nm. The luminescence intensities are also found to be strongly enhanced by magnetic fields at low temperatures due to mixing of the exciton states.  相似文献   

3.
We study the absorption by neutral excitons and positively charged excitons (trions) following a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the gas of free holes is created by the formation of trions. The evolution of these populations is described, including spin flip and trion formation. We evaluate the contributions of phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blocked.  相似文献   

4.
We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled boron nitride nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response. Excitons with a binding energy larger than 2 eV are found in the BN nanotubes. Moreover, unlike the carbon nanotubes, theory predicts that these exciton states are comprised of coherent supposition of transitions from several different subband pairs, giving rise to novel behaviors.  相似文献   

5.
The final goal of this paper is to derive the effective scattering ruling the time evolution of two semiconductor trions using the many-body formalism for composite fermions we have just proposed. However, to understand the importance of the particle composite nature, their bosonic/fermionic character and their overall charge, we also report on scatterings between free electrons, excitons and trions. This leads us to identify the form factors associated to direct processes involving excitons and trions. For transitions between ground states, these form factors reduce to zero and one respectively, in the small momentum transfer limit.  相似文献   

6.
Finkelstein  G.  Bar-Joseph  I. 《Il Nuovo Cimento D》1995,17(11):1239-1245
Il Nuovo Cimento D - We implement optical spectroscopy to study charged excitons (trions) in modulation-doped GaAs/AlGaAs quantum wells. We observe for the first time several new trions: the...  相似文献   

7.
We present a review of spin-dependent properties of excitons in semiconductor colloidal nanocrystals. The photoluminescences (PL) properties of neutral and charged excitons (trions) are compared. The mechanisms and the polarization of radiative recombination of a “dark” (spin-forbidden) exciton that determines the low-temperature PL of colloidal nanocrystals are discussed in detail. The radiative recombination of a dark exciton becomes possible as a result of simultaneous flips of the surface spin and electron spin in a dark exciton that leads to admixture of bright exciton states. This recombination mechanism is effective in the case of a disordered state of the spin system and is suppressed if the polaron ferromagnetic state forms. The conditions and various mechanisms of formation of the spin polaron state and possibilities of its experimental detection are discussed. The experimental and theoretical studies of magnetic field-induced circular polarization of PL in ensembles of colloidal nanocrystals are reviewed.  相似文献   

8.
We report on original nonlinear spectral hole-burning experiments in single wall carbon nanotubes that bring evidence of pure dephasing induced by exciton-exciton scattering. We show that the collision-induced broadening in carbon nanotubes is controlled by exciton-exciton scattering as for Wannier excitons in inorganic semiconductors, while the population relaxation is driven by exciton-exciton annihilation as for Frenkel excitons in organic materials. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems.  相似文献   

9.
The aim of this work is to study the dynamic formation and dissociation of trions and excitons in double barrier resonant tunneling diodes. We propose a system of rate equations that takes into account the formation, dissociation and annihilation of these complexes inside the quantum well. From the solutions of the coupled equations, we are able to study the modulation of excitons and trions formation in the device as a function of the applied bias. The results of our model agree qualitatively with the experiments showing the viability of these rate equations system to study the dynamics of complex systems.  相似文献   

10.
Low-energy, dark excitonic states have recently been predicted to lie below the first bright (E11) exciton in semiconducting single-walled carbon nanotubes [Phys. Rev. Lett. 93, 157402 (2004)10.1103/PhysRevLett.93.157402]. Decay into such deep excitonic states is implicated as a mechanism which reduces photoluminescence quantum yields. In this study we report the first direct observation of deep excitons in SWNTs. Photoluminescence (PL) microscopy of suspended semiconducting single-walled carbon nanotubes (SWNTs) reveals weak emission satellites redshifted by approximately 38-45 and approximately 100-130 meV relative to the main E11 PL emission peaks. Similar satellites, redshifted by 95-145 meV depending on nanotube species, were also found in PL measurements of ensembles of SWNTs in water-surfactant dispersions. The relative intensities of these deep exciton emission features depend on the nanotube surroundings.  相似文献   

11.
Jian-Min Wu 《中国物理 B》2022,31(5):57803-057803
Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.  相似文献   

12.
We show how an atomistic pseudopotential plus many-body configuration interaction theory can address the main spectroscopic features of self-assembled dots including, excitons, trions, biexcitons, fine-structure, charging spectra as well as electric-field dependence of entanglement in dot molecules.  相似文献   

13.
An overview on photon echo spectroscopy under resonant excitation of the exciton complexes in semiconductor nanostructures is presented. The use of four-wave-mixing technique with the pulsed excitation and heterodyne detection allowed us to measure the coherent response of the system with the picosecond time resolution. It is shown that, for resonant selective pulsed excitation of the localized exciton complexes, the coherent signal is represented by the photon echoes due to the inhomogeneous broadening of the optical transitions. In case of resonant excitation of the trions or donor-bound excitons, the Zeeman splitting of the resident electron ground state levels under the applied transverse magnetic field results in quantum beats of photon echo amplitude at the Larmor precession frequency. Application of magnetic field makes it possible to transfer coherently the optical excitation into the spin ensemble of the resident electrons and to observe a long-lived photon echo signal. The described technique can be used as a high-resolution spectroscopy of the energy splittings in the ground state of the system. Next, we consider the Rabi oscillations and their damping under excitation with intensive optical pulses for the excitons complexes with a different degree of localization. It is shown that damping of the echo signal with increase of the excitation pulse intensity is strongly manifested for excitons, while on trions and donor-bound excitons this effect is substantially weaker.  相似文献   

14.
A study has been made of bound exciton-electron complexes (trions) and unbound exciton-electron states (combined exciton-cyclotron resonance) from reflectance spectra obtained from modulation-doped CdTe/CdMgTe quantum-well structures. It has been established that the contribution of trions to dielectric permittivity is comparable to that of excitons. An analysis is made of the magnetic-field dependence of the parameters describing the contribution to dielectric permittivity due to exciton-cyclotron-resonance states. Fiz. Tverd. Tela (St. Petersburg) 40, 813–815 (May 1998)  相似文献   

15.
We report the direct observation of spin-singlet dark excitons in individual single-walled carbon nanotubes through low-temperature micro-magneto-photoluminescence spectroscopy. A magnetic field (B) applied along the tube axis brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing B at the expense of the originally dominated bright exciton peak and became dominant at B>3 T. This behavior, universally observed for more than 50 tubes of different chiralities, can be quantitatively modeled by incorporating the Aharonov-Bohm effect and intervalley Coulomb mixing. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 nm. Scatter in the splitting value emphasizes the role of the local environment surrounding a nanotube in determining its excitonic fine structure.  相似文献   

16.
The X trion is essentially an electron bound to an exciton. However, due to the composite nature of the exciton, there is no way to write an exciton-electron interaction potential. We can overcome this difficulty by using a commutation technique similar to the one we introduced for excitons interacting with excitons, which allows to take exactly into account the close-to-boson character of the excitons. From it, we can obtain the X trion creation operator in terms of excitons and electrons. We can also derive the X trion ladder diagram between an exciton and an electron. These are the basic tools for future works on many-body effects involving trions.  相似文献   

17.
Excitons are generally believed not to exist in metals because of strong screening by free carriers. Here we demonstrate that excitonic states can in fact be produced in metallic systems of a one-dimensional character. Using metallic single-walled carbon nanotubes as a model system, we show both experimentally and theoretically that electron-hole pairs form tightly bound excitons. The exciton binding energy of 50 meV, deduced from optical absorption spectra of individual metallic nanotubes, significantly exceeds that of excitons in most bulk semiconductors and agrees well with ab initio theoretical predictions.  相似文献   

18.
We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.  相似文献   

19.
Measurements of the luminescence from intrinsic Ge, with a nearly uniform photoexcited carrier density, indicate the presence of trions, molecules and excitons at temperatures between 5.5 K and 15 K. We do not observe an ionization catastrophe at densities above the Mott criterion -- an observation which suggests large quantum corrections to the Debye-Huckel screening model.  相似文献   

20.
The binding energies and sizes of excitons, and energy splitting of the bright-dark excitons in single-walled carbon nanotubes have been calculated using the nonorthogonal tight-binding model, supplemented by the long-range Coulomb interaction. It is found that the binding energies and the sizes of excitons not only depend on tube's diameter d, but also its chirality. However, the splitting of the bright-dark excitons mostly depends on 1/d2. Our obtained results show that the curvature effect is very important for the exciton excitations in the SWNTs, especially in the smaller diameter ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号