首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural population, whose population numbers are small and generations are non-overlapping, can be modelled by difference equations that describe how the population evolve in discrete time-steps. This paper investigates a recent study on the dynamics complexities in a single-species discrete population model with stage structure and birth pulses. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Above this, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that this the dynamical behaviors of the single-species discrete model with birth pulses are very complex, including (a) non-unique dynamics, meaning that several attractors and chaos coexist; (b) small-amplitude annual oscillations; (c) large-amplitude multi-annual cycles; (d) chaos. Some interesting results are obtained and they showed that pulsing provides a natural period or cyclicity that allows for a period-doubling route to chaos.  相似文献   

2.
A delayed Lotka–Volterra two-species predator–prey system with discrete hunting delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that under suitable conditions on the parameters the positive equilibrium is asymptotically stable when the hunting delay is less than a certain critical value and unstable when the hunting delay is greater than this critical value. Meanwhile, according to the Hopf bifurcation theorem for functional differential equations (FDEs), we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the hunting delay crosses through a sequence of critical values. In particular, by applying the normal form theory and the center manifold reduction for FDEs, an explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions occurring through Hopf bifurcations is given. Finally, to verify our theoretical predictions, some numerical simulations are also included at the end of this paper.  相似文献   

3.
In this article, we study a discrete delayed flour beetle population equation. Firstly, we study the existence of period-doubling bifurcation and Neimark–Sacker bifurcations for the system by analysing its characteristic equations. Secondly, we investigate the direction of the two bifurcations and the stability of the bifurcation periodic solutions by using normal form theory. Finally, some numerical simulations are carried out to support the analytical results.  相似文献   

4.
For a system of delayed neural networks of Hopfield type, we deal with the study of global attractivity, multistability, and bifurcations. In general, we do not assume monotonicity conditions in the activation functions. For some architectures of the network and for some families of activation functions, we get optimal results on global attractivity. Our approach relies on a link between a system of functional differential equations and a finite-dimensional discrete dynamical system. For it, we introduce the notion of strong attractor for a discrete dynamical system, which is more restrictive than the usual concept of attractor when the dimension of the system is higher than one. Our principal result shows that a strong attractor of a discrete map gives a globally attractive equilibrium of a corresponding system of delay differential equations. Our abstract setting is not limited to applications in systems of neural networks; we illustrate its use in an equation with distributed delay motivated by biological models. We also obtain some results for neural systems with variable coefficients.  相似文献   

5.
A n-coupled BVP oscillators system with delays is considered. By choosing the delays as the bifurcating parameters, some results of the Hopf bifurcations occurring at the zero equilibrium as the delays increase are exhibited. Using the symmetric functional differential equation theories of Wu [Jianhong Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (12) (1998) 4799–4838], the multiple Hopf bifurcations are obtained, and their spatio-temporal patterns: mirror-reflecting waves, standing waves, and discrete waves are demonstrated. Finally, computer simulations are performed to illustrate the analytical results found.  相似文献   

6.
This paper is concerned with stability analysis of biological networks modeled as discrete and finite dynamical systems. We show how to use algebraic methods based on quantifier elimination, real solution classification and discriminant varieties to detect steady states and to analyze their stability and bifurcations for discrete dynamical systems. For finite dynamical systems, methods based on Gr?bner bases and triangular sets are applied to detect steady states. The feasibility of our approach is demonstrated by the analysis of stability and bifurcations of several discrete biological models using implementations of algebraic methods.  相似文献   

7.
In this paper, we consider a simple discrete two-neuron network model with three delays. The characteristic equation of the linearized system at the zero solution is a polynomial equation involving very high order terms. We derive some sufficient and necessary conditions on the asymptotic stability of the zero solution. Regarding the eigenvalues of connection matrix as the bifurcation parameters, we also consider the existence of three types of bifurcations: Fold bifurcations, Flip bifurcations, and Neimark–Sacker bifurcations. The stability and direction of these three kinds of bifurcations are studied by applying the normal form theory and the center manifold theorem. Our results are a very important generalization to the previous works in this field.  相似文献   

8.
Discrete models are proposed to delve into the rich dynamics of nonlinear delayed systems under Euler discretization, such as backwards bifurcations, stable limit cycles, multiple limit-cycle bifurcations and chaotic behavior. The effect of breaking the special symmetry of the system is to create a wide complex operating conditions which would not otherwise be seen. These include multiple steady states, complex periodic oscillations, chaos by period doubling bifurcations. Effective computation of multiple bifurcations, stable limit cycles, symmetrical breaking bifurcations and chaotic behavior in nonlinear delayed equations is developed.  相似文献   

9.
We examine the bifurcations to positive and sign-changing solutions of degenerate elliptic equations. In the problems we study, which do not represent Fredholm operators, we show that there is a critical parameter value at which an infinity of bifurcations occur from the trivial solution. Moreover, a bifurcation occurs at each point in some unbounded interval in parameter space. We apply our results to non-monotone eigenvalue problems, degenerate semi-linear elliptic equations, boundary value differential-algebraic equations and fully non-linear elliptic equations.

  相似文献   


10.
The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill-posed problems. We are concerned with the situation when the right-hand side vector is contaminated by measurement errors, and we discuss how a meaningful approximate solution of the discrete ill-posed problem can be determined by early termination of the iterations with the GMRES method. We propose a termination criterion based on the condition number of the projected matrices defined by the GMRES method. Under certain conditions on the linear system, the termination index corresponds to the vertex of an L-shaped curve.  相似文献   

11.
Dynamic systems that are subject to fast disturbances, parametrised by a disturbance vector d, undergo bifurcations for some values of the disturbance d. In this work we specifically examine those bifurcations which give rise to system trajectories that leave the domain of attraction of a desired system state. We derive equations which describe the manifold of bifurcation values (that is the manifold of disturbances d which cause the system trajectory to abandon the desired domain of attraction) and the corresponding normal vectors. The system of equations can then be used to find the smallest critical disturbance in physical, biological or other systems, or to robustly optimise design parameters of an engineered system.  相似文献   

12.
We study a continuous time cobweb model with discrete time delays where heterogeneous producers behave as adapters in the market. Specifically, they partially adjust production (which is subject to some gestation lags) towards the profit-maximising quantity under static expectations. The dynamics of the economy is described by a two-dimensional system of delay differential equations. We characterise stability properties of the stationary state of the system and show the emergence of Hopf bifurcations. We also apply some recent mathematical techniques (stability crossing curves) to show how heterogeneous time delays affect the stability of the economy.  相似文献   

13.
We consider the system of delay differential equations (DDE) representing the models containing two cells with time-delayed connections. We investigate global, local stability and the bifurcations of the trivial solution under some generic conditions on the Taylor coefficients of the DDE. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension one bifurcations (including pitchfork, transcritical and Hopf bifurcation) and Takens-Bogdanov bifurcation as a codimension two bifurcation. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. Finally, we show that the analytical results agree with numerical simulations.  相似文献   

14.
The purpose of this paper is twofold. First, we use Lagrange''s method and the generalized eigenvalue problem to study systems of two quadratic equations. We find exact conditions so the system can be codiagonalized and can have up to $4$ solutions. Second, we use this result to study homoclinic bifurcations for a periodically perturbed system. The homoclinic bifurcation is determined by $3$ bifurcation equations. To the lowest order, they are $3$ quadratic equations, which can be simplified by the codiagonalization of quadratic forms. We find that up to $4$ transverse homoclinic orbits can be created near the degenerate homoclinic orbit.  相似文献   

15.
Some draining or coating fluid‐flow problems and problems concerning the flow of thin films of viscous fluid with a free surface can be described by third‐order ordinary differential equations (ODEs). In this paper, we solve the boundary value problems of such equations by sinc discretization and prove that the discrete solutions converge to the true solutions of the ODEs exponentially. The discrete solution is determined by a linear system with the coefficient matrix being a combination of Toeplitz and diagonal matrices. The system can be effectively solved by Krylov subspace iteration methods, such as GMRES, preconditioned by banded matrices. We demonstrate that the eigenvalues of the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the linear system. Numerical examples are given to illustrate the effective performance of our method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We study the Lanczos type methods for continuation problems. First we indicate how the symmetric Lanczos method may be used to solve both positive definite and indefinite linear systems. Furthermore, it can be used to monitor the simple bifurcation points on the solution curve of the eigenvalue problems. This includes computing the minimum eigenvalue, the minimum singular value, and the condition number of the partial tridiagonalizations of the coefficient matrices. The Ritz vector thus obtained can be applied to compute the tangent vector at the bifurcation point for branch-switching. Next, we indicate that the block or band Lanczos method can be used to monitor the multiple bifurcations as well as to solve the multiple right hand sides. We also show that the unsymmetric Lanczos method can be exploited to compute the minimum eigenvalue of a nearly symmetric matrix, and therefore to detect the simple bifurcation point as well. Some preconditioning techniques are discussed. Sample numerical results are reported. Our test problems include second order semilinear elliptic eigenvalue problems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Bifurcations for a predator-prey system with two delays   总被引:2,自引:0,他引:2  
In this paper, a predator-prey system with two delays is investigated. By choosing the sum τ of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as τ crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation result of [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838], we may show the global existence of periodic solutions.  相似文献   

18.
In this work we investigate the numerical solution of Jaulent–Miodek (JM) and Whitham–Broer–Kaup (WBK) equations. The proposed numerical schemes are based on the fourth-order time-stepping schemes in combination with discrete Fourier transform. We discretize the original partial differential equations (PDEs) with discrete Fourier transform in space and obtain a system of ordinary differential equations (ODEs) in Fourier space which will be solved with fourth order time-stepping methods. After transforming the equations to a system of ODEs, the linear operator in JM equation is diagonal but in WBK equation is not diagonal. However for WBK equation we can also implement the methods such as diagonal case which reduces the CPU time. Comparing numerical solutions with analytical solutions demonstrates that those methods are accurate and readily implemented.  相似文献   

19.
We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka–Volterra prey–predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka–Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka–Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.  相似文献   

20.
Two-parameter bifurcations in a network of two neurons with multiple delays   总被引:1,自引:0,他引:1  
We consider a network of two coupled neurons with delayed feedback. We show that the connection topology of the network plays a fundamental role in classifying the rich dynamics and bifurcation phenomena. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension 1 bifurcations (including a fold bifurcation and a Hopf bifurcation) and codimension 2 bifurcations (including fold-Hopf bifurcations and Hopf-Hopf bifurcations). We also give concrete formulae for the normal form coefficients derived via the center manifold reduction that give detailed information about the bifurcation and stability of various bifurcated solutions. In particular, we obtain stable or unstable equilibria, periodic solutions, quasi-periodic solutions, and sphere-like surfaces of solutions. We also show how to evaluate critical normal form coefficients from the original system of delay-differential equations without computing the corresponding center manifolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号