首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe a simple multiplex vibrational spectroscopic imaging technique based on employing chirped femtosecond pulses in a coherent anti-Stokes Raman scattering (CARS) scheme. Overlap of a femtosecond Stokes pulse with chirped pump/probe pulses introduces a temporal gate that defines the spectral resolution of the technique, allowing single-shot acquisition of high spectral resolution CARS spectra over a several hundred wavenumber bandwidth. Simulated chirped (c-) CARS spectra match the experimental results, quantifying the dependence of the high spectral resolution on the properties of the chirped pulse. c-CARS spectromicroscopy offers promise as a simple and generally applicable high spatial resolution, chemically specific imaging technique for studying complex biological and materials samples.  相似文献   

3.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this spectroscopy. However, it can be demonstrated that by shaping the femtosecond pulses a selective excitation of specific vibrational modes is possible. We demonstrate that using a feedback-controlled optimization technique, molecule-specific CARS spectra can be obtained from a mixture of different substances. A careful analysis of the experimental results points to a nontrivial control of the vibrational mode dynamics in the electronic ground state of the molecules as underlying mechanism.  相似文献   

4.
Coherent 2D resonance Raman spectroscopy is a multidimensional technique that is capable of separating and sorting peaks that appear heavily congested and disordered in conventional 1D spectra. It can sort rovibrational peaks according to rotational and vibrational quantum number, vibrational sequence, and rotational selection rule. New results suggest that pattern recognition methods can also be used to determine whether the highly detailed rovibrational information is coming from the ground electronic state or the excited electronic state. This capability is demonstrated using experimental results from I(2) and C(2).  相似文献   

5.
We present a significant sensitivity improvement of interferometric multiplex coherent anti-Stokes Raman scattering (CARS) by optimizing the power, bandwidth and phase of the pump, Stokes, and probe pulses independently. Fourier transform spectral interferometry (FTSI) is used to retrieve the entire complex quantity of the CARS spectrum by utilizing the non-resonant background as a local oscillator. Background-free spontaneous Raman-like vibrational spectra can be measured over the 500-1400 cm(-1) range with 20 cm(-1) spectral resolution within a tens of microseconds time scale. Chemically selective microscopy of a multicomponent polymer film is performed to demonstrate the feasibility of its microscopy application. A systematic analysis of the signal recovery method and several technical issues are discussed.  相似文献   

6.
The symmetry properties of selected vibrational modes of mesoporphyrin IX dimethyl ester (MP-IX-DME) in solution are investigated under different electronic resonance conditions. The Raman band parameters of the macrocycle modes nu(2), nu(10), nu(11), and nu(19) are determined from a quantitative analysis of polarized spontaneous resonance Raman (RR) and polarization-sensitive (PS) multiplex coherent anti-Stokes Raman scattering (CARS) spectra obtained with pre-resonant B band and resonant Qx band excitation, respectively. Additionally, the molecular geometry and the vibrational modes of MP-IX-DME are calculated by employing density functional theory (DFT) on the B3LYP/6-31G(d) level. Both the DFT-derived structure and the Raman spectroscopic parameters of MP-IX-DME indicate minor deviations from an ideal D2h macrocycle symmetry. To assess the influence of the beta substitution pattern on the in-plane symmetry, calculated normal-mode vectors and several experimentally detected parameters, such as peak positions, depolarization ratios, and coherent phases, are analyzed. The effects of the macrocycle substitution pattern are different for the selected vibrational modes: nu(2) in particular is very sensitive to subtle perturbations of the in-plane symmetry. The considerable activity of totally symmetric vibrations observed in the PS CARS spectra of MP-IX-DME and the correlation of mode symmetries with coherent phases confirm earlier PS CARS results on octaethylporphine (OEP) acquired under the same electronic resonance conditions.  相似文献   

7.
Resonance-enhanced coherent anti-Stokes Raman scattering (CARS) spectra are reported for light and dark adapted bacteriorhodopsin in aqueous solution in the nanosecond time range. Spectra have been obtained in the scanning as well as in the multiplex mode. Minor differences between the spectra obtained recently by the conventional resonance Raman and the present resonance CARS method are discussed.  相似文献   

8.
The third-order polarization for coherent anti-Stokes Raman scattering (CARS) from a pure state is described by 48 terms in perturbation theory, but only 4 terms satisfy the rotating wave approximation. They are represented by Feynman dual time-line diagrams and four-wave mixing energy level diagrams. In time-resolved (tr) fs and fs/ps CARS from the ground vibrational state, one resonant diagram, which is the typical CARS term, with three field interactions-pump, Stokes, followed by probe-on the ket is dominant. Using the separable, displaced harmonic oscillators approximation, an analytic result is obtained for the four-time correlation function in the CARS third-order polarization. Dlott's phenomenological expression for off-resonance CARS from the ground vibrational state is derived using a three-state model. We calculated the tr fs and fs/ps CARS for toluene and Rhodamine 6G (R6G), initially in the ground vibrational state, to compare with experimental results. The observed vibrational features and major peaks for both tr fs and fs/ps CARS, from off-resonance (for toluene) to resonance (for R6G) pump wavelengths, can be well reproduced by the calculations. The connections between fs/ps CARS, fs stimulated Raman spectroscopy, and impulsive stimulated scattering for toluene and R6G are discussed.  相似文献   

9.
Resonance enhanced coherent anti-Stokes Raman scattering (CARS) spectra have been obtained for the highly fluorescing acridine dyes, acridine orange and proflavine, in dilute methanol solutions at submillimolar concentrations. Spectra have also been taken in the multiplex mode by the use of a broad-band Stokes laser and a Vidicon OMA detection system. Several Raman bands are observed in the 1100–1600 cm?1 region originating from the acridine ring modes. Upon decreasing the beam crossing angle a continuous transition from the normal CARS spectrum to a negative spectrum in the nonresonant background is observed.  相似文献   

10.
Vibrational spectra of red fluorescent protein DsRed have been studied for the first time by polarization-sensitive multiplex coherent anti-Stokes Raman scattering at two excitation wavelengths, 545 and 583 nm, in resonance with the absorption bands of the immature "green" and mature "red" protein chromophores. Overall vibrational patterns of both DsRed chromophores were found to be similar to each other and to differ from that of S65T-GFP at pH8. The combined analysis of our CARS data and published structural information suggest that both "green" and "red" DsRed species possess an extended chromophore structure. Consequently, our data suggest that pi-bonding system extension during isomerization around the cis peptide bond between Phe 65 and Gln 66 is a necessary but not sufficient step in DsRed chromophore maturation.  相似文献   

11.
The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.  相似文献   

12.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

13.
Coherent anti-Stokes Raman scattering (CARS) spectra of excited molecules as well as Shpolskii spectra provide information about geometry changes between ground and excited states. Vibrational frequencies and relative intensities from recently obtained CARS spectra of the chrysene S1 and T1 state and earlier observed Shpolskii spectra are interpreted in terms of molecular geometry and force-field changes by means of quantum-chemical consistent force field (QCFF) and Franck-Condon factor calculations. The comparison of observed and calculated relative intensities indicates a coupling between the S1 and S2 state enhancing some of the vibrational radiative singlet transitions both in absorption and fluorescence spectra whereas within the phosphorescence spectra proportionality to calculated Franck-Condon factors is obeyed. The T1 state is the more loosely bound state and its geometry change is different from that of the S1 state. The resonance CARS transitions in the S1 state are assigned to totally symmetric vibrations getting their intensity by a coupling scheme analogous to the A term of the resonance Raman effect: the relative intensity of a transition is shown to be proportional to the Franck-Condon factor to the higher excited state and to the squared vibrational frequency. Using this relation this state can be identified by means of its finger-print-like intensity pattern.  相似文献   

14.
Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexing approach that allows real-time detection of multiple species using the fast Fourier transform. We demonstrate the quantitative determination of chemical concentrations in a ternary mixture. Furthermore, two imaging applications are pursued: (1) quantitative determination of oil content as well as pigment and protein concentration in microalgae cultures; and (2) 3D high-resolution imaging of blood, lipids, and protein distribution in ex vivo mouse skin tissue. We believe that quantitative multiplex SRS uniquely combines the advantage of fast label-free imaging with the fingerprinting capability of Raman spectroscopy and enables numerous applications in lipid biology as well as biomedical imaging.  相似文献   

15.
Coherent anti-Stokes Raman scattering (CARS) microscopy is presented as a new nonlinear optical technique. The combination of vibrational spectroscopy and microscopy allows highly sensitive investigations of unlabelled samples. CARS is an ideal tool for studying a broad variety of samples. The main drawback of the technique is its non-zero-background nature, which implies that the signal has to be detected against a nonresonant background. The need to solve this problem is reflected in the rapid technological developments that have been observed during the last decade. Recent results show that CARS microscopy has the potential to become an important complementary technique that can be used with other well-established microscopic methods. Although it has some limitations, it offers unique access to many problems that cannot be tackled with conventional techniques. For this reason, it can be expected that the impressive growth of the field will continue.  相似文献   

16.
A theory is developed for three-laser electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitric oxide (NO). A vibrational Q-branch Raman polarization is excited in the NO molecule by the frequency difference between visible Raman pump and Stokes beams. An ultraviolet probe beam is scattered from the induced Raman polarization to produce an ultraviolet ERE-CARS signal. The frequency of the ultraviolet probe beam is selected to be in electronic resonance with rotational transitions in the A (2)Sigma(+)<--X (2)Pi (1,0) band of NO. This choice results in a resonance between the frequency of the ERE-CARS signal and transitions in the (0,0) band. The theoretical model for ERE-CARS NO spectra has been developed in the perturbative limit. Comparisons to experimental spectra are presented where either the probe laser was scanned with fixed Stokes frequency or the Stokes laser was scanned with fixed probe frequency. At atmospheric pressure and an NO concentration of 100 ppm, good agreement is found between theoretical and experimental spectral peak locations and relative intensities for both types of spectra. Factors relating to saturation in the experiments are discussed, including implications for the theoretical predictions.  相似文献   

17.
A theoretical expression is developed for femtosecond coherent anti-Stokes Raman scattering (CARS) to quantitatively account for the vibrational line shape in the presence of nonresonant signal. The contributions of the resonant and nonresonant components are extracted from the emitted signal line shape as a function of Stokes wavelength and as a function of the temporal overlap of the two pump pulses (for spectrally resolved femtosecond CARS). The theory is compared to the measured spectra of the oxygen vibrational transition DeltaG(01)=1556.4 cm(-1) for temporal detunings of 0 and 700 fs.  相似文献   

18.
Vibrational properties of a porphyrin J-aggregate microcrystal have been investigated by ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy using a supercontinuum light source generated from a photonic crystal fiber. Owing to a strong resonance effect due to an excitonic transition, clear spectral and spatial profiles of the CARS signal have been successfully obtained. On the basis of the comparison between the CARS and the fluorescence images, the spatial dependence of the CARS signal can be explained by the spatial inhomogeneity of the excitonic transition energy in the single J-aggregate microcrystal.  相似文献   

19.
Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.  相似文献   

20.
Monosodium glutamate (MSG), a common flavor enhancer, is detected in aqueous solutions by Raman and surface-enhanced Raman (SERS) spectroscopies at the micromolar level. The presence of different species, such as protonated and unprotonated MSG, is demonstrated by concentration and pH dependent Raman and SERS experiments. In particular, the symmetric bending modes of the amino group and the stretching modes of the carboxy moiety are employed as marker bands. The protonation of the NH(2) group at acidic pH values, for example, is detected in the Raman spectra. From the measured SERS spectra, a strong chemical interaction of MSG with the colloidal particles is deduced and a geometry of MSG adsorbed on the silver surface is proposed. In order to assign the observed Raman bands, calculations employing density functional theory (DFT) were performed. The calculated geometries, harmonic vibrational wavenumbers and Raman scattering activities for both MSG forms are in good agreement with experimental data. The set of theoretical data enables a complete vibrational assignment of the experimentally detected Raman spectra and the differentiation between the anhydrous and monohydrate forms of MSG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号