首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
Time-resolved light scattering studies have been undertaken for elucidating the dynamics of phase separation in aqueous HPC (hydroxypropyl cellulose) liquid-crystalline solutions. The HPC/water system phase separates during heating and returns to a single phase upon cooling. The phase diagram of thermally induced phase separation was subsequently established on the basis of cloud point measurements. For kinetic studies, T (temperature) jump experiments of 10 per cent aqueous HPC solutions were undertaken. Phase separation occurs in accordance with the spinodal decomposition mechanism. At low T jumps or in reverse quenched experiments, the scattering maximum remains invariant as predicted by the linearized Cahn-Hilliard theory. However, at large T jumps, the SD is dominated by non-linear behaviour in which scattering peaks move to low scattering angles. The latter process has been identified to be a coarsening mechanism associated with the coalescence of phase separated domains driven by a surface tension. A reduced plot has been established with dimensionless variables Q and t. It was found that the scaling law is not valid over the entire spinodal process. The time evolution of the scattering profiles of 10 per cent HPC solutions, following a Tjump to 49°C, is tested with the scaling law of Furukawa. It seems that the kinetics of phase separation at 10 per cent solution resemble the behaviour of off-critical mixture.  相似文献   

2.
Abstract

Time-resolved light scattering studies have been undertaken for elucidating the dynamics of phase separation in aqueous HPC (hydroxypropyl cellulose) liquid-crystalline solutions. The HPC/water system phase separates during heating and returns to a single phase upon cooling. The phase diagram of thermally induced phase separation was subsequently established on the basis of cloud point measurements. For kinetic studies, T (temperature) jump experiments of 10 per cent aqueous HPC solutions were undertaken. Phase separation occurs in accordance with the spinodal decomposition mechanism. At low T jumps or in reverse quenched experiments, the scattering maximum remains invariant as predicted by the linearized Cahn-Hilliard theory. However, at large T jumps, the SD is dominated by non-linear behaviour in which scattering peaks move to low scattering angles. The latter process has been identified to be a coarsening mechanism associated with the coalescence of phase separated domains driven by a surface tension. A reduced plot has been established with dimensionless variables Q and t. It was found that the scaling law is not valid over the entire spinodal process. The time evolution of the scattering profiles of 10 per cent HPC solutions, following a Tjump to 49°C, is tested with the scaling law of Furukawa. It seems that the kinetics of phase separation at 10 per cent solution resemble the behaviour of off-critical mixture.  相似文献   

3.
Suzuki's scaling theory for transient phenomena is applied to the calculation of the kinetics of phase separation in the early-to-intermediate stage based on a nonlinear theory proposed by Langer, Bar-on, and Miller (LBM). Calculated results are compared with experimental data on light scattering from a polymer blend system. Deviations from predictions of Cahn's linearized theory in the early time range of phase separation can be explained well by the proposed method of calculation. Nonlinear effects are found to play an essential role in characterizing the light scattering behavior of phase separation in the intermediate stage. Time evolutions of the single-point distribution function of composition are calculated, and the results are in good agreement with those reported in digital imaging analysis experiments and computer simulations of the time-dependent Ginzburg-Landau equation. The influence of asymmetry of free-energy on the single-point distribution function is also investigated in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Mechanism of membrane formation by dipping a 10 wt% aqueous homogeneous polymer solution of poly(itaconic acid–co-acrylamide) (75:25 molar ratio)/polyvinylpyrrolidone (50/50) into acid solution was investigated by time-resolved light scattering and the pH effect of the acid solution to gelation mechanism during membrane formation was discussed. In the pH range 1.58–1.25, the gelation was governed by phase separation mechanism via the spinodal decomposition and then a membrane with regular pore size was obtained. The phase separation was caused by polymer–polymer complex formation between polymers. From an analysis based on Cahn's linearized theory of the spinodal decomposition, the apparent diffusion coefficient Dapp of phase separation was smaller for lower pH. Because, at low pH there exists a lot of complex which dramatically reduces the chain mobility. The average pore size of membrane also depends on pH. When the pH was lower than 1.25, the liquid–liquid phase separation did not occur but the solution gelled homogeneously and a wrinkle-like morphology without pore was observed. FTIR analysis of the dried membranes showed that the complex formation had occurred by hydrogen bonding between the component polymers and its extent increased linearly with decreasing pH.  相似文献   

5.
Cloud point extraction (CPE) is an efficient and green separation technology as an alternative to conventional organic solvent extractions. How to accelerate the phase separation of aqueous surfactant solutions conveniently is of great importance. In this study, the effect of power ultrasound on the phase separation of aqueous solutions of a nonionic surfactant, Triton X-114 [(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol], has been studied as a function of temperature by means of rheo-small angle light scattering. It is found that anomalous viscosity enhancements and micron-sized scattering aggregates are observed for the surfactant solutions after ultrasound irradiation. The aggregate growth is quantified by the characteristic length of the aggregates. It is proposed that ultrasonic cavitation can promote the aggregation or transition of surfactants in the aqueous solutions, resulting in the formation of micrometer-scale phase-separated droplets. This work may advance further understanding of the controlled transformation of aggregates in surfactant solutions via power ultrasound and promote its applications in CPE.  相似文献   

6.
The present work introduces the interaction of hard and soft colloids in aqueous solutions at various temperatures and concentrations, as well as at critical conditions of temperature induced phase separation. Hard and soft colloids are represented by luminescent silica nanoparticles and aggregates of PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers correspondingly. The formation of the mixed aggregates between hard and soft colloids in equilibrium conditions has been revealed by dynamic light scattering measurements. The distribution of silica nanoparticles between aqueous and surfactant rich phases after phase separation highlights the effect of pH, architecture and concentration of triblock copolymers on the mixed hard-soft colloids aggregation at cloud point conditions. The peculiar aggregation and phase behavior of PPO-PEO-PPO pluronics should be assumed as the main reason of the enhanced mixed aggregation with SNs at increased temperatures and concentrated conditions.  相似文献   

7.
New experimental data have been collected on thermodynamic properties of solutions of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in toluene. The Flory–Huggins interaction parameters g have been determined from light scattering measurements. These values are in agreement with values obtained by osmotic measurements at low concentrations and they allow the calculation of a melting point curve which fits the experimental melting points. No liquid–liquid phase separation can be calculated, as was concluded in a preceding paper. Spinodals could not be detected by light scattering or DSC-measurements. This also indicates that liquid–liquid phase separation does not occur. The phase separation on cooling of a PPO-toluene solution is thus believed to be a crystallization phenomenon.  相似文献   

8.
Thermoresponsive graft copolymers with alkylene-aromatic polyester main chain and poly-2-ethyl-2-oxazoline side chains were synthesized. Two copolymer samples which differed in grafting density (0.5 and 0.7) were studied using dynamic and static light scattering and turbidimetry in aqueous solutions at concentration 0.0053?g?cm?3. Hydrodynamic radii of scattering objects and their contribution to light scattering were obtained as a function of temperature in a wide temperature interval. Temperatures of phase separation were found out. Effect of grafting density on the copolymer behavior in aqueous solutions upon heating was determined. In particular, the phase separation temperature reduces with the decreasing grafting density.  相似文献   

9.
Shear-induced phase separation was found in "nonentangled" oligomer mixture. The sheared mixture in one phase becomes turbid and its scattering pattern exhibits so-called "butterfly pattern" which is commonly observed in shear-induced phase separation of semidilute polymer solutions. The origin of the shear-induced phase separation is found to be dynamical asymmetry due to the difference in the glass transition temperature.  相似文献   

10.
Thephasebehaviorinmultiplecomponentpolymersconstitutesalongstandingactiveacademicsubjectbothinpolymerscienceandcondensedstatephysics.Itisespeciallysignificantinguidingthefabricationofpolymeralloys[1].Duringthelastdecadesmuchattentionhasbeenpaidtothecom…  相似文献   

11.
本文用激光光散射技术研究了高分子混合体系聚甲基丙烯酸甲酯/(苯乙烯-丙烯腈)共聚物(PMMA/PSAN)不稳相分离(Spinodal decomposition)过程,结果指出,相分离前期符合Cahn理论预言的结果;首次用光散射技术在高分子混合体系相分离研究中得到了不稳相分离增长速率最大值R(q_m);只(q)的实验结果与理论值相吻合;证实了界面自由能对相分离增长速率的影响是不可忽略的。  相似文献   

12.
The kinetics of phase separation via the spinodal decomposition of poly(styrene‐co‐maleic anhydride)/poly(methyl methacrylate) from a delay time period to late stages were investigated with a light scattering technique. The standard procedure for identifying four stages of spinodal decomposition, based on the characteristics of concentration fluctuations, was clearly introduced with the light scattering method. The spinodal limits were divided into four stages: the delay time, the early stage, the intermediate stage, and the late stage. The validity of the linearized theory was reviewed because it was used as an indicator of the limit of the early stage of spinodal decomposition, which divided the delay time period from the early stage and the early stage from the intermediate stage. The linearized theory fit the experimental results very well after the delay time. The scaled structure function of the melt‐mixed blend was analyzed. The universality of the scale structure function, F(x) = S(q,t)qm3(t) (where S is the structure function, x is equal to q/qm, q is the scattering wave vector, qm is the maximum wave vector, and t is the time in seconds), indicated the late stage of phase separation and divided the late stage from the intermediate stage. The simple normalized scaling function profile for the cluster region proposed by Furukawa described the experimental data very well, whereas the profile for deep quenching, which was recently suggested, showed some discrepancies. As a result of the phase separation, the processing of this blend may be able to be developed to provide the most suitable morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 871–885, 2004  相似文献   

13.
Dynamics of phase separation in bisphenol-A polycarbonate (PC)/syndiotactic polymethyl methacrylate (sPMMA) blends has been investigated by means of time-resolved light scattering. Solvent-cast films of the PC/sPMMA blends were transparent, suggestive of miscible character. Several temperature jumps were carried out at a 50/50 PC/sPMMA composition from a homogeneous state (room temperature) into a two-phase regime. The process of phase separation first occurred for some considerable period, then it was followed by phase dissolution driven by chemical reaction. The thermodegradative reaction of sPMMA triggered the dissolution process by probably forming PC/sPMMA graft or random copolymers at the interface, which eventually resulted in a single phase. However, annealing at elevated temperatures for an extended period could lead to cross-linking, and thus a two-phase structure could be fixed permanently. The early stage of spinodal decomposition was interpreted in terms of the linearized Cahn-Hilliard theory. In the late stages of spinodal decomposition, the relationship between scattering peak wavenumber and time was found to obey a power law, but the exponents showed a strong dependence on temperature jumps. The temporal universal scaling failed due to the influence of the chemical reaction. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Complexes composed of sodium hyaluronate (NaHA) and bovine serum albumin (BSA) were studied to elucidate the exact composition of the complex, the phase separation, the electrophoretic mobility and the size using dynamic light scattering (DLS) and electrophoretic light scattering (ELS), etc. The phase diagram of the mixed solutions was determined. The complexes were soluble in neutral or weakly acidic pH regions and showed phase separation in the more acidic pH region. From the concentration of Na+ released from NaHA when it binds to BSA, the ratios of BSA to NaHA of the complexes were determined. In the region of soluble complexes, one BSA molecule was determined to bind with 15 carboxylic groups of NaHA and in the region of insoluble complexes to bind with 6 carboxylic groups. At the phase separation point, 117 BSA molecules bound with one NaHA molecule and 17% of the carboxylic groups of NaHA did not contribute to the binding of BSA. The sizes of the complexes decreased from several microm to several hundred nm as the binding ratio of BSA increases. Decreases in the viscosities of the mixed solutions were consistent with the decreases of the sizes. From these results, a model of complex formation is proposed.  相似文献   

15.
A unique porous polymeric film was prepared by drying a ternary polymer solution: a polystyrene (PS), polyethylene glycol (PEG), and toluene solution. Highly ordered micropores, ranging from 5 to 12 mum in diameter, were formed on the film surface, and the rim of each micropore was surrounded by a ring of PEG. The effects of the weight ratio of the polymer blend and molecular weight of the polymer (PEG) on the porous structure were investigated. Based on in situ visual observation and light scattering measurements, the formation mechanism of the porous structure was speculated to be a two step phase separation: the phase separation into PEG-rich and PEG-poor (i.e., PS-rich) phases occurred first at the surface area of the ternary solutions, where polymers were condensed due to solvent evaporation. The PEG-rich phase became droplets and had an ordered structure on the surface. The PEG-poor phase became a matrix where PS and solvent coexisted as a single phase solution. Secondary phase separation then followed in the PEG droplets, which was induced by further solvent evaporation, and formed into solvent-rich and PEG-rich domains within the droplets. Solvent evaporation and secondary phase separation created a cavity structure in each PEG droplet structured on the film surface.  相似文献   

16.
Structure formation by coupling between formation of crosslinking points and liquid–liquid phase separation was investigated for aqueous methyl cellulose solution by small‐angle X‐ray scattering (SAXS) and light scattering (LS) techniques. The sol–gel phase diagram and the SAXS results suggested that the liquid–liquid phase separation occurred before gelation. By LS measurements, the structure due to the liquid–liquid phase separation was directly observed. By applying speckle analysis on the LS profiles, it was suggested that the gelation and the phase separation strongly coupled each other: the increase in the apparent molecular weight by crosslinking induced the liquid–liquid phase separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 168–174, 2010  相似文献   

17.
The behavior at the early stage of spinodal decomposition (SD) for polyetherimide (PEI)/epoxy blends was investigated. It was found that the phase separation of PEI/epoxy blends took place by SD mechanism. The development of molar mass in the epoxy resin was gradual and then the three blends could still be considered as concentrated solutions of thermoplastic. The kinetics at the early stage of phase separation for these blends could be described by the Cahn–Hilliard–Cook linearized theory.  相似文献   

18.
N,N,N',N'-tetraoctyl diglycolamide abbreviated as TODGA, is one of the most promising extractant for actinide partitioning from high level nuclear waste. It forms reverse micelles in non polar solvents on equilibration with aqueous HNO(3) solutions. This reverse micellar system undergoes phase separation into dilute and concentrated reverse micellar solutions at high aqueous acid concentration. Small angle neutron scattering (SANS) studies reported in the literature explained this phenomenon based on gas-liquid type phase transition in the framework of Baxter adhesive hard sphere theory in the presence of a strong inter-micellar attractive interaction. The present investigation attempts to throw further light on this system by carrying out systematic dynamic light scattering (DLS) and viscometry studies, and their modeling on the TODGA reverse micellar solutions in the dodecane medium. The variation of the diffusion coefficient with the micellar volume fraction observed from the DLS studies is suggestive of the presence of an attractive interaction between the TODGA reverse micelles, which weakens at the high micellar volume fraction due to the increased dominance of the excluded volume effect. It is suggested that this weakened interaction is responsible for the absence of phase separation in this system at high TODGA concentration. The results thus highlight the importance of the presence of an attractive interaction between the TODGA micelles in determining the observed phase separation in the TODGA reverse micellar systems. The modeling of the DLS and viscosity data, however, suggest that the characteristic stickiness parameter of this system could be smaller than the critical value required for inducing a gas-liquid type phase transition.  相似文献   

19.
Strongly ionized amphiphilic diblock copolymers of poly(styrene)-b-poly(styrenesulfonate) with various hydrophilic and hydrophobic chain lengths were synthesized by living radical polymerization, and their properties and self-assembling behavior were systematically investigated by surface tension measurement, foam formation, hydrophobic dye solubilization, X-ray reflectivity, dynamic light scattering, small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscope techniques. These copolymer solutions in pure water did not show a decrease of surface tension with increasing polymer concentration. The solutions also did not show foam formation, and no adsorption at the air/water interface was confirmed by reflectivity experiments. However, in 0.5 M NaCl aq solutions polymer adsorption and foam formation were observed. The critical micelle concentration (cmc) was observed by the dye solubilization experiment in both the solutions with and without added salt, and by dynamic light scattering we confirmed the existence of polymer micelles in solution, even though there was no adsorption of polymer molecules at the water surface in the solution without salt. By the small-angle scattering technique, we confirmed that the micelles have a well-defined core-shell structure and their sizes were 100-150 A depending on the hydrophobic and hydrophilic chain length ratio. The micelle size and shape were unaffected by addition of up to 0.5 M salt. The absence of polymer adsorption at the water surface with micelle formation in a bulk solution, which is now known as a universal characteristic for strongly ionized amphiphilic block copolymers, was attributed to the image charge effect at the air/water interface due to the many charges on the hydrophilic segment.  相似文献   

20.
The effect of acidity of a medium on the phase separation temperature and the intensity of light scattering for dispersions produced by heating of aqueous solutions of N,N-dimethylaminoethyl methacrylate, N-vinylcaprolactam, and their copolymers has been studied. It has been demonstrated that the phase separation temperature and the turbidity of polyvinylcaprolactam (and vinylcaprolactam-enriched copolymers) solutions are pH-independent. Poly(N,N-dimethylaminoethyl methacrylate) (and N,N-dimethylaminoethyl methacrylateenriched copolymers) exhibits temperature sensitivity only in the alkaline region, and the phase separation temperature and turbidity versus pH plots are described by curves with maxima. The addition of sodium dodecyl sulfate to polymer solutions in the general case causes an increase in the phase separation temperature. However, if positive charges occur on macromolecules (in initial solutions of poly(N,N-dimethylaminoethyl methacrylate) or acidified solutions of polyvinylcaprolactam), the increase in the phase separation temperature is preceded by its decrease owing to the electrostatic interaction of surfactant anions with cationic centers. As acid is introduced into the H2O-sodium dodecyl sulfate-polyvinylcaprolactam ternary system, the phase separation temperature of the polyvinylcaprolactam-dodecyl sulfate complex is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号