首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An efficient method for the preparation of 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepine derivatives under mild conditions has been developed. The reaction of 2‐(2‐aminophenyl)ethanols 1 with acid chlorides in the presence of excess Et3N in THF at room temperature gave the corresponding N‐acylated intermediates 2 , which were dehydrated by treatment with POCl3 to give 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepines 3 in a one‐pot reaction.  相似文献   

2.
The reaction of N‐benzylbenzamides 6 with SOCl2 under reflux gave the corresponding N‐benzylbenzimidoyl chlorides 7 . Further treatment with KSeCN in dry acetone yielded imidoyl isoselenocyanates 3 (Scheme 2). These compounds, obtained in satisfying yields, proved to be stable enough to be purified and analyzed. Reaction of 3 with morpholine in dry acetone led to the corresponding selenourea derivatives 8 . On treatment with Et3N, the 4‐nitrobenzyl derivatives of type 3 were transformed into bis(2,4‐diarylimidazol‐5‐yl) diselenides 9 (Scheme 3). This transformation takes place only when the benzyl residue bears an NO2 group and the phenyl group is not substituted with a strong electron‐donating group. A reaction mechanism for the formation of 9 is proposed in Scheme 4. The key structures have been established by X‐ray crystallography.  相似文献   

3.
Eleven novel 5‐methyl‐2‐[(un)substituted phenyl]‐4‐{4,5‐dihydro‐3‐[(un)substituted phenyl]‐5‐(1,2,3,4‐tetrahydroisoquinoline‐2‐yl)pyrazol‐1‐yl}‐oxazole derivatives were synthesized and characterized by elemental analysis, ESI‐MS, 1H NMR and 13C NMR. All of the compounds have been screened for their antiproliferative activities against PC‐3 cell (human prostate cancer) and A431 cell (human epidermoid carcinoma cancer) lines in vitro. The results revealed that compounds 4g , 4j and 4k exhibited the strong inhibitory activities against the PC‐3 cell lines (with IC50 values of 2.8±0.11, 3.1±0.10 and 3.0±0.06 μg/mL, respectively).  相似文献   

4.
Various isoindolo[2,1‐a]quinazoline‐5,11‐dione derivatives 3 were synthesized in good yields by means of the reductive reaction of N‐substituted 2‐nitrobenzamides 1 and 2‐formylbenzoic acids 2 in the presence of SnCl2?2 H2O under reflux in EtOH (Scheme, Table). The procedure needed two steps, the reduction of the nitro group of the 2‐nitrobenzamide and ring closure by nucleophilic addition of the NH2 group to both the formyl and carboxylic acid C?O groups.  相似文献   

5.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

6.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

7.
Four new 3,4‐dihydro‐1‐benzoxepin‐5(2H )‐one derivatives, namely (E )‐4‐(5‐bromo‐2‐hydroxybenzylidene)‐6,8‐dimethoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 7 ), (E )‐4‐[(E )‐3‐(5‐bromo‐2‐hydroxyphenyl)allylidene]‐6,8‐dimethoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 8 ), (E )‐4‐(5‐bromo‐2‐hydroxybenzylidene)‐6‐hydroxy‐8‐methoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, C18H15BrO5, ( 9 ), and (E )‐4‐[(E )‐3‐(5‐bromo‐2‐hydroxyphenyl)allylidene]‐6‐hydroxy‐8‐methoxy‐3,4‐dihydrobenzo[b ]oxepin‐5(2H )‐one, ( 10 ), have been synthesized and characterized by FT–IR, NMR and MS. The structure of ( 9 ) was confirmed by single‐crystal X‐ray diffraction. Crystal structure analysis shows that molecules of ( 9 ) are connected into a one‐dimensional chain in the [010] direction through classical hydrogen bonds and these chains are further extended into a three‐dimensional network via C—H…O interactions. The inhibitory activities of these compounds against protein–tyrosine kinases (PTKs) show that 6‐hydroxy‐substituted compounds ( 9 ) and ( 10 ) are more effective for inhibiting ErbB1 and ErbB2 than are 6‐methoxy‐substituted compounds ( 7 ) and ( 8 ). This may be because ( 9 ) and ( 10 ) could effectively bind to the active pockets of the protein through intermolecular interactions.  相似文献   

8.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

9.
通过(E)-b-碘代烯基砜与末端炔的Sonogashira偶联反应,以中等到良好的产率合成了磺酰基取代的1,3-烯炔。在NiCl2(PPh3)2催化下,产物与格氏试剂发生脱磺酰基偶联反应,磺酰基被进一步转化为不同的取代基。  相似文献   

10.
Treatment of {[(benzyloxy)carbonyl]amino}‐substituted sulfones 1 with 2‐[(trimethylsilyl)oxy]furan ( 2 ) in the presence of InCl3 as a catalyst at room temperature produced the γ‐butenolactone derivatives 3 and 4 containing a protected amino group (Scheme 1). The products were formed in high yields (81–92%) within 3–10 h favoring the anti‐isomer 3 .  相似文献   

11.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

12.
The 2‐thienyl‐substituted 4,5‐dihydrofuran derivatives 3 – 8 were obtained by the radical cyclization reaction of 1,3‐dicarbonyl compounds 1a – 1f with 2‐thienyl‐substituted conjugated alkenes 2a – 2e by using [Mn(OAc)3] (Tables 15). In this study, reactions of 1,3‐dicarbonyl compounds 1a – 1e with alkenes 2a – 2c gave 4,5‐dihydrofuran derivatives 3 – 5 in high yields (Tables 13). Also the cyclic alkenes 2d and 2e gave the dihydrobenzofuran compounds, i.e., 6 and 7 in good yields (Table 4). Interestingly, the reaction of benzoylacetone (=1‐phenylbutane‐1,3‐dione; 1f ) with some alkenes gave two products due to generation of two stable carbocation intermediates (Table 5).  相似文献   

13.
The reactions of 5‐benzylidene‐3‐phenylrhodanine ( 2 ; rhodanine=2‐thioxo‐1,3‐thiazolidin‐4‐one) with diazomethane ( 7a ) and phenyldiazomethane ( 7b ) occurred chemoselectively at the exocyclic C?C bond to give the spirocyclopropane derivatives 9 and, in the case of 7a , also the C‐methylated products 8 (Scheme 1). In contrast, diphenyldiazomethane ( 7c ) reacted exclusively with the C?S group leading to the 2‐(diphenylmethylidene)‐1,3‐thiazolidine 11 via [2+3] cycloaddition and a ‘two‐fold extrusion reaction’. Treatment of 8 or 9b with an excess of 7a in refluxing CH2Cl2 and in THF at room temperature in the presence of [Rh2(OAc)4], respectively, led to the 1,3‐thiazolidine‐2,4‐diones 15 and 20 , respectively, i.e., the products of the hydrolysis of the intermediate thiocarbonyl ylide. On the other hand, the reactions with 7b and 7c in boiling toluene yielded the corresponding 2‐methylidene derivatives 16, 21a , and 21b . Finally, the reaction of 11 with 7a occurred exclusively at the electron‐poor C?C bond, which is conjugated with the C?O group. In addition to the spirocyclopropane 23 , the C‐methylated 22 was formed as a minor product. The structures of the products (Z)‐ 8, 9a, 9b, 11 , and 23 were established by X‐ray crystallography.  相似文献   

14.
In this study, some 3‐(thiophen‐2‐ylmethyl)‐4‐substituted‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐one derivatives were synthesized by the cyclization reaction of 1‐(thiophen‐2‐ylacetyl)‐4‐substituted semicarbazide derivatives in alkaline medium or in the immediate reaction of thiophen‐2‐yl‐acetic acid hydrazide with isocyanates. The structures of all new compounds were confirmed by analytical and spectroscopic methods. Selected derivatives were evaluated in vitro against several species of aerobic bacteria. Some of them showed activity against S. pyogenes, P. aeruginosa and S. aureus.  相似文献   

15.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

16.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

17.
Several novel substituted bis(2‐pyridylimino)isoindolato (BPI) cobalt(II) and iron(II) complexes [M(BPI)(OAc)(H2O)] (M = Co: 1 ‐ 6, Fe: 7) have been synthesized by reaction of bis(2‐pyridylimino)isoindole derivatives with the corresponding metal(II) acetates. Reaction of 1‐6 with 1.5 ‐ 2 molar equivalents of t‐BuOOH gave the corresponding alkylperoxocobalt(III) complexes [Co(BPI)(OAc)(OOtBu)] (10 ‐ 15). Using an aqueous solution of t‐BuOOH (70 %), cyclohexene was selectively catalytically oxidized to the dialkylperoxide cyclohex‐2‐ene‐1‐t‐butylperoxide.  相似文献   

18.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

19.
The three‐component reaction of the zwitterions generated from dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates and triphenylphosphine (Ph3P) with isoindoline‐1,3‐diimine (=1H‐isoindole‐1,3(2H)‐diimine) is described (Scheme 1). This reaction affords the corresponding special type of substituted dihydropyrimido[2,1‐a]isoindole derivatives in good yields without using any catalyst and activation (Table).  相似文献   

20.
Substituted benzene‐1,2‐diamine reacted with various α‐keto esters at 50° under mild conditions for 15 min using H2O as reaction medium, providing a variety of 3‐substituted quinoxalinone derivatives in excellent yields. The reaction was instantaneous, and products were isolated by simple filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号