首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrödinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed. It is found that in some cases, the soliton solutions to the nonlinear Schrödinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrödinger equation through approximation, although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference. The origin of the differences is also discussed.  相似文献   

2.
We prove some new Strichartz estimates for a class of dispersive equations with radial initial data. In particular, we obtain the full radial Strichartz estimates up to some endpoints for the Schrödinger equation. Using these estimates, we obtain some new results related to nonlinear problems, including small data scattering and large data LWP for the nonlinear Schrödinger and wave equations with radial critical initial data and the well-posedness theory for the fractional order Schrödinger equation in the radial case.  相似文献   

3.
A nonlinear network with many coupled nonlinear LC dispersive transmission lines is considered, each line of the network containing a finite number of cells. In the semi-discrete limit, we apply the reductive perturbation method and show that the wave propagation along the network is governed by a two-dimensional nonlinear partial differential equation (2-D NPDE) of Schrödinger type. Two regimes of wave propagation, the high-frequency and the low-frequency are detected. By the means of exact soliton solution of the 2-D NPDE, we investigate analytically the soliton pulse propagation in the network. Our results show that the network under consideration supports the propagation of kink and dark solitons.  相似文献   

4.
We consider the higher-order dispersive nonlinear Schrödinger equation including fourth-order dispersion effects and a quintic nonlinearity. This equation describes the propagation of femtosecond light pulses in a medium that exhibits a parabolic nonlinearity law. By adopting the ansatz solution of Li et al. [Zhonghao Li, Lu Li, Huiping Tian, Guosheng Zhou. New types of solitary wave solutions for the higher-order nonlinear Schrödinger equation. Phys Rev Lett 2000;84:4096], we find two different solitary wave solutions under certain parametric conditions. These solutions are in the form of bright and dark soliton solutions.  相似文献   

5.
6.
We use the Hirota bilinear approach to consider physically relevant soliton solutions of the resonant nonlinear Schrödinger equation with nontrivial boundary conditions, recently proposed for describing uniaxial waves in a cold collisionless plasma. By the Madelung representation, the model transforms into the reaction-diffusion analogue of the nonlinear Schrödinger equation, for which we study the bilinear representation, the soliton solutions, and their mutual interactions.  相似文献   

7.
Soliton solutions of a class of generalized nonlinear evolution equations are discussed analytically and numerically, which is achieved using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical solutions and the interactions between the solitons for the generalized nonlinear Schrödinger equations. The characteristic behavior of the nonlinearity admitted in the system has been investigated and the soliton state of the system in the limit ofα → 0 andα → ∞ has been studied. The results presented show that soliton phenomena are characteristics associated with the nonlinearities of the dynamical systems.  相似文献   

8.
We study several mathematical aspects of a system of equations modelling the interaction between short waves, described by a nonlinear Schrödinger equation, and long waves, described by the equations of magnetohydrodynamics for a compressible, heat conductive fluid. The system in question models an aurora-type phenomenon, where a short wave propagates along the streamlines of a magnetohydrodynamic medium. We focus on the one dimensional (planar) version of the model and address the problem of well posedness as well as convergence of the sequence of solutions as the bulk viscosity tends to zero together with some other interaction parameters, to a solution of the limit decoupled system involving the compressible Euler equations and a nonlinear Schrödinger equation. The vanishing viscosity limit serves to justify the SW–LW interactions in the limit equations as, in this setting, the SW–LW interactions cannot be defined in a straightforward way, due to the possible occurrence of vacuum.  相似文献   

9.
We examine the propagation conditions of modulated gap signal voltage in a one-dimensional nonlinear discrete electrical transmission line where nonlinear capacitors are introduced both in their series and shunt branches. Especially, we consider that the propagating signal voltage frequency belong to the forbidden band zones. Using the exact discrete equations of the network and the extended nonlinear Schrödinger equation, the threshold value of the signal amplitude over which pulse soliton is emitted in the network is found. We show that when the signal amplitude exceeds a particular value, the critical value, peaked soliton can be emitted by the network due to the nonlinear dispersive elements of the series branches. Numerical simulations, confirming the exactness of the analytical analysis are performed on the exact equations of the network.  相似文献   

10.
Spatial soliton solutions of a class of generalized nonlinear Schrodinger equations in N-space are discussed analytically and numerically. This achieved using a traveling wavemethod to formulate one-soliton solution and the P-R method is employed to the numerlcal solutions and the interactions between the solirons for the generalized nonlinear systems in Z-pace.The results presented show that the soliton phenomena are characteristics associated with the nonlinearhies of the dynamical systems.  相似文献   

11.
The Riemann–Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding \(3\times 3\) matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.  相似文献   

12.
A consistent Riccati expansion (CRE) is proposed for solving nonlinear systems with the help of a Riccati equation. A system having a CRE is then defined to be CRE solvable. The CRE solvability is demonstrated quite universal for various integrable systems including the Korteweg–de Vries, Kadomtsev–Petviashvili, Ablowitz–Kaup–Newell–Segur (and then nonlinear Schrödinger), sine‐Gordon, Sawada–Kotera, Kaup–Kupershmidt, modified asymmetric Nizhnik–Novikov–Veselov, Broer–Kaup, dispersive water wave, and Burgers systems. In addition, it is revealed that many CRE solvable systems share a similar determining equation describing the interactions between a soliton and a cnoidal wave. They have a common nonlocal symmetry expression and they possess a formally universal once Bäcklund transformation.  相似文献   

13.
In the present work, the nonlinear interactions of two acoustical waves governed by the Boussinesq equation with different wave numbers, frequencies and the group velocities are examined. For that purpose, we used the reductive perturbation method and obtained the coupled nonlinear Schrödinger equations. The nonlinear plane wave solution to these equations are given for some special cases.  相似文献   

14.
Addressed here is the occurrence of point singularities which owe to the focusing of short or long waves, a phenomenon labeled dispersive blow-up. The context of this investigation is linear and nonlinear, strongly dispersive equations or systems of equations. The present essay deals with linear and nonlinear Schrdinger equations, a class of fractional order Schrdinger equations and the linearized water wave equations, with and without surface tension. Commentary about how the results may bear upon the formation of rogue waves in fluid and optical environments is also included.  相似文献   

15.
The inverse scattering transform for the derivative nonlinear Schrödinger‐type equation is studied via the Riemann‐Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann‐Hilbert problem is established for the derivative nonlinear Schrödinger‐type equation. In the inverse scattering process, N‐soliton solutions of the derivative nonlinear Schrödinger‐type equation are obtained by solving Riemann‐Hilbert problems corresponding to the reflectionless cases. Moreover, the dynamics of the exact solutions are discussed.  相似文献   

16.
A perturbation method based on Fourier analysis and multiple scales is introduced for solving weakly nonlinear, dispersive wave propagation problems with Fourier-transformable initial conditions. Asymptotic solutions are derived for the weakly nonlinear cubic Schrödinger equation with variable coefficients, and verified by comparison with numerical solutions. In the special case of constant coefficients, the asymptotic solution agrees to leading order with previously derived results in the literature; in general, this is not true to higher orders. Therefore previous asymptotic results for the strongly nonlinear Schrödinger equation can be valid only for restricted initial conditions.  相似文献   

17.
18.
In this paper, a closed form optical soliton solution is obtained for the nonlinear Schrödinger’s equation with fourth order dispersion in a power law media. The solitary wave ansatze is used to carry out the integration of this equation. Finally, a numerical simulation is given for the closed form soliton solution.  相似文献   

19.
The nonlinear interactions and modulations of an n-dimensional wave and of a disturbance to a near-critical system governed by a general (n + 1)-dimensional system of equations are studied by perturbation methods. It is found that these modulations are governed by an evolution equation which is either by itself or coupled to a second equation, depending on the nature of the long wave solutions of the corresponding linearized system. When a single evolution equation exists, its leading terms are shown to give the nonlinear Schrödinger equation. Water waves and near-critical plane Poiseuille flow are discussed as examples.  相似文献   

20.
We consider the fully parity‐time (PT) symmetric nonlocal (2 + 1)‐dimensional nonlinear Schrödinger (NLS) equation with respect to x and y. By using Hirota's bilinear method, we derive the N‐soliton solutions of the nonlocal NLS equation. By using the resulting N‐soliton solutions and employing long wave limit method, we derive its nonsingular rational solutions and semi‐rational solutions. The rational solutions act as the line rogue waves. The semi‐rational solutions mean different types of combinations in rogue waves, breathers, and periodic line waves. Furthermore, in order to easily understand the dynamic behaviors of the nonlocal NLS equation, we display some graphics to analyze the characteristics of these solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号