首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chimera composed of the natural products radicicol and geldanamycin has been prepared through an amide linkage connecting the resorcinol moiety of radicicol to the quinone ring of geldanamycin. The inhibitory activity of these compounds was determined by their ability to inhibit Hsp90's inherent ATPase activity along with degradation of the Hsp90 client protein, HER-2 in MCF-7 breast cancer cells. [reaction: see text]  相似文献   

2.
Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP‐regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP‐competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2‐phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first‐generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules’ effects on Hsp90 enzymatic, conformational, co‐chaperone and client‐binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary.  相似文献   

3.
Novobiocin is a member of the coumermycin family of antibiotics and is a well-established inhibitor of DNA gyrase. Recent studies have shown that novobiocin binds to a previously unrecognized ATP-binding site at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. In an effort to develop more efficacious inhibitors of the C-terminal binding site, a library of novobiocin analogues was prepared and initial structure-activity relationships revealed. These data suggested that the 4-hydroxy moiety of the coumarin ring and the 3'-carbamate of the noviose appendage were detrimental to Hsp90 inhibitory activity. In an effort to confirm these findings, 4-deshydroxy novobiocin (DHN1) and 3'-descarbamoyl-4-deshydroxynovobiocin (DHN2) were prepared and evaluated against Hsp90. Both compounds were significantly more potent than the natural product, and DHN2 proved to be more active than DHN1. In an effort to determine whether these moieties are important for DNA gyrase inhibition, these compounds were tested for their ability to inhibit DNA gyrase and found to exhibit significant reduction in gyrase activity. Thus, we have established the first set of compounds that clearly differentiate between the C-terminus of Hsp90 and DNA gyrase, converted a well-established gyrase inhibitor into a selective Hsp90 inhibitor, and confirmed essential structure-activity relationships for the coumermycin family of antibiotics.  相似文献   

4.
The title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythropentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2(1H)‐one, C12H15N3O4, shows two conformations in the crystalline state which differ mainly in the glycosylic bond torsion angle and the sugar pucker. Both mol­ecules exhibit an anti glycosylic bond conformation, with torsion angles χ = −135.0 (2) and −156.4 (2)° for mol­ecules 1 and 2, respectively. The sugar moieties show a twisted C2′‐endo sugar pucker (S‐type), with P = 173.3 and 192.5° for mol­ecules 1 and 2, respectively. The crystal structure is characterized by a three‐dimensional network that is stabilized by several inter­molecular hydrogen bonds between the two conformers.  相似文献   

5.
Inhibition of Heat-shock protein 90 (Hsp90) is considered an attractive route in fighting against cancer proliferation. Herein, new indene derivatives targeting Hsp90 were synthesized, and biologically evaluated. The new series of indeno-pyrimidine and indeno-pyridine were synthesized from the reaction of indene-enaminone with various heterocyclic amines and active methylene derivatives. Two breast cancer cell lines were used to examine the new compounds in vitro for their anticancer activity, namely, MCF-7 and MDA-MB231 cancer cells. The new indene derivatives 8a-c, 17a, and 25 displayed significant antitumor effect especially on MCF-7 cell line compared to doxorubicin. Derivative 8a was further subjected to Hsp90 enzyme assay aiming to ensure the inhibitory potential of such compound on Hsp90, it displayed IC50 = 18.79 ± 0.68 nM relative to Alvespimycin as a reference drug. Finally, molecular modeling of the most active compounds in the Hsp90 binding site was done presenting agreement with the in vitro anti-Hsp90 activity.  相似文献   

6.
Heat shock protein 90 (Hsp90) is a molecular chaperone (90 kDa) that functions as a dimer. This protein facilitates the folding, assembly, and stabilization of more than 400 proteins that are responsible for cancer development and progression. Inhibiting Hsp90’s function will shut down multiple cancer‐driven pathways simultaneously because oncogenic clients rely heavily on Hsp90, which makes this chaperone a promising anticancer target. Classical inhibitors that block the binding of adenine triphosphate (ATP) to the N‐terminus of Hsp90 are highly toxic to cells and trigger a resistance mechanism within cells. This resistance mechanism comprises a large increase in prosurvival proteins, namely, heat shock protein 70 (Hsp70), heat shock protein 27 (Hsp27), and heat shock factor 1 (HSF‐1). Molecules that modulate the C‐terminus of Hsp90 are effective at inducing cancer‐cell death without activating the resistance mechanism. Herein, we describe the design, synthesis, and biological binding affinity for a series of dimerized C‐terminal Hsp90 modulators. We show that dimers of these C‐terminal modulators synergistically inhibit Hsp90 relative to monomers.  相似文献   

7.
Recent studies have shown that the DNA gyrase inhibitor, novobiocin, binds to a previously unrecognized ATP-binding site located at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. As a result of these studies, several analogues of the coumarin family of antibiotics have been reported and shown to exhibit increased Hsp90 inhibitory activity; however, the monomeric species lacked the ability to manifest anti-proliferative activity against cancer cell lines at concentrations tested. In an effort to develop more efficacious compounds that produce growth inhibitory activity against cancer cell lines, structure-activity relationships were investigated surrounding the prenylated benzamide side chain of the natural product. Results obtained from these studies have produced the first novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines.  相似文献   

8.
Copolyamides of PA 66/6 lithium 5‐sulfoisophthalic acid (LiSIPA) containing up to 40 mol % of LiSIPA were prepared in a 1L‐pilot reactor operating at high pressures and high temperatures. Interestingly, the presence of lithium sulfonate moieties highly impacted the glass transition temperature of the polyamide. The Tg increased from 59 °C for PA 66 to 155 °C for a copolymer containing about 40 mol % of LiSIPA. 1,3‐Dihexylbenzenedicarboxamide and lithium p‐toluenesulfonate were synthesized as model compounds to investigate the interaction of lithium sulfonate moieties and amide functions. Infrared spectroscopy using ATR technology performed on mixture of both compounds showed that the carbonyl group of amide functions interacts with the lithium cation of lithium sulfonate moieties. Similar S? O and C? O adsorption bands were observed in copolyamides PA 66/6LiSIPA and in mixture of model compounds, which strongly suggest the formation in the copolyamides of physical cross‐linking points centered on lithium cations coordinated by carbonyl groups of amide functions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The chemical modification of polymers having amide moieties was carried out with p‐toluenesulfonyl isocyanate. The resulting polymers revealed high hydrolytic character. For example, poly(acrylamide) was refluxed with an excess amount of p‐toluenesulfonyl isocyanate in THF for 50 h to obtain a structurally modified polymer in 76% yield, whose sulfonylurea functionality was 100%. The resulting polymer was subjected to hydrolysis in a 1 M NaOH solution at 50 °C to convert 90% of the sulfonylurea in the side chain to the carboxylic acid moieties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3440–3449, 2000  相似文献   

10.
Polycarbosilanes with or without sugar‐derived structures in the polymer side chains were synthesized and their application to materials for cell cultivation was investigated. Polysilacyclobutanes having glucose‐derived moieties or N‐acetylglucosamine‐derived moieties (polyBMSB‐glucose and polyBMSB‐AGA) were synthesized by ene‐thiol reaction between precursor poly(1‐(3‐butenyl)?1‐methylsilacyclubane) (polyBMSB) and tetraacetylglucose or tetraacetylglucosamine having a thiol group at the anomeric position and the successive deprotection of the acetyl groups gave polycarbosilanes with sugar‐derived structures in the side chains. Poly(1‐(3‐hydroxybutyl)‐1‐methylsilacyclobutane) was synthesized by hydroboration/oxidation of the precursor polyBMSB. The cell cultivation efficiency using the polymers with or without sugar moieties was evaluated by cultivation of WRL cells on the polystyrene dishes coated with the polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2267–2272  相似文献   

11.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding and/or trafficking of ∼400 client proteins, many of which are directly associated with cancer progression. Consequently, inhibition of Hsp90 can exhibit similar activity as combination therapy as multiple signaling nodes can be targeted simultaneously. In fact, seventeen small-molecule inhibitors that bind the Hsp90 N-terminus entered clinical trials for the treatment of cancer, all of which exhibited pan-inhibitory activity against all four Hsp90 isoforms. Unfortunately, most demonstrated undesired effects alongside induction of the pro-survival heat shock response. As a result, isoform-selective inhibitors have been sought to overcome these detriments. Described herein is a structure-based approach to design Hsp90β-selective inhibitors along with preliminary SAR. In the end, compound 5 was shown to manifest ∼370-fold selectivity for Hsp90β versus Hsp90α, and induced the degradation of select Hsp90β-dependent clients. These data support the development of Hsp90β-selective inhibitors as a new paradigm to overcome the detriments associated with pan-inhibition of Hsp90.  相似文献   

12.
We report on the synthesis and characterization of novel substituted 1,1′‐biperylene‐2,2′‐diols in which the dihedral angle between the two polycyclic aromatic hydrocarbon (PAH) units is tailored from ca. 60° to ca. 90° in the solid state by introduction of cyclo‐etheric straps or sterically hindered groups such as the triisopropylsilyl (TIPS) group. Depending on the type of substitution, we lock the dihedral angle between the perylenyl moieties enabling fine‐tuning of the molecular optoelectronic properties, with the molecules displaying the smallest angles acting as exceptionally strong emitters with unitary quantum yields.  相似文献   

13.
The identification of inhibitors of Hsp90 is currently a primary goal in the development of more effective drugs for the treatment of various types of multidrug resistant malignancies. In an attempt to identify new small molecules modulating the activity of Hsp90, we screened a small library of tetranortriterpenes. A high‐affinity interaction with Hsp90 inducible form was uncovered for eight of these compounds, five of which are described here for the first time. By monitoring the ATPase activity and the citrate synthase thermal induced aggregation, compound 1 (cedrelosin A), 3 (7α‐limonylacetate), and 5 (cedrelosin B), containing a limonol moiety, were found to be the most effective in compromising the Hsp90α chaperone activity. Consistent with these findings, the three compounds caused a depletion of c‐Raf and pAkt Hsp90 client proteins in HeLa and MCF/7 cell lines. Induced fit docking protocol and molecular dynamics were used to rationalize the structural basis of the biological activity of the limonol derivatives. Taken together, these results point to limonol‐derivatives as promising scaffolds for the design of novel Hsp90α inhibitors.  相似文献   

14.
The DNA gyrase inhibitor, novobiocin, was recently shown to inhibit Hsp90 via a previously unrecognized C-terminal ATP-binding site. Previous structure-activity relationship studies identified key moieties that appear important for Hsp90 inhibitory activity. In an effort to provide a more efficacious lead compound, a parallel library of noviosylated coumarin analogues was prepared.  相似文献   

15.
Some amide derivatives are highly valuable products with antiproliferative and cytotoxic bioactivity. In this paper, 12 novel amide compounds were synthesized correspondingly by boc‐protection glycine, deprotection, and condensation reactions. The antiproliferative and cytotoxic activity of these compounds was also evaluated by human cervical cancer (Hela) and hepatoma carcinoma (SK‐Hep‐1) cancer cell lines. The assay revealed that eight compounds ( 5a–d , 6a–d ) exhibited activity against Hela cancer cells. Four of them ( 5a–d ) also showed activity against SK‐Hep‐1 cancer cells. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 24:9–17, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21057  相似文献   

16.
Hsp90 inhibitors identified from a library of novobiocin analogues   总被引:1,自引:0,他引:1  
Novobiocin is a C-terminal inhibitor of the Hsp90 protein folding machinery, which is responsible for the conformational maturation of numerous proteins involved in cancer growth and survival. Due to novobiocin's poor inhibitory activity ( approximately 700 muM), very little attention has been paid toward the development of novobiocin analogues for Hsp90 inhibition. In this study, a parallel library of 20 novobiocin derivatives was prepared and the biological activity of each evaluated by Western blot analysis of Hsp90 client proteins. A4 was found to be a potent inhibitor of Hsp90 as determined by its ability to cause the degradation of several Hsp90 client proteins in both breast and prostate cancer cell lines. In the presence of 1 muM A4, several Hsp90 client proteins were degraded, including AKT, Her2, Hif-1alpha, and the androgen receptor.  相似文献   

17.
Supramolecular self‐assembly of histidine‐capped‐dialkoxy‐anthracene (HDA) results in the formation of light‐responsive nanostructures. Single‐crystal X‐ray diffraction analysis of HDA shows two types of hydrogen bonding. The first hydrogen bond is established between the imidazole moieties while the second involves the oxygen atom of one amide group and the hydrogen atom of a second amide group. When protonated in acidic aqueous media, HDA successfully complexes siRNA yielding spherical nanostructures. This biocompatible platform controllably delivers siRNA with high efficacy upon visible‐light irradiation leading up to 90 % of gene silencing in live cells.  相似文献   

18.
Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein–protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.  相似文献   

19.
Aspartic proteinases, which include HIV‐1 proteinase, function with two aspartate carboxy groups at the active site. This relationship has been modeled in a system possessing an otherwise unactivated amide positioned between two carboxy groups. The model amide is cleaved at an enzyme‐like rate that renders the amide nonisolable at 35 °C and pH 4 owing to the joint presence of carboxy and carboxylate groups. A currently advanced theory attributing almost the entire catalytic power of enzymes to electrostatic reorganization is shown to be superfluous when suitable interatomic interactions are present. Our kinetic results are consistent with spatiotemporal concepts where embedding the amide group between two carboxylic moieties in proper geometries, at distances less than the diameter of water, leads to enzyme‐like rate enhancements. Space and time are the essence of enzyme catalysis.  相似文献   

20.
The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins. Based on these premises, the simultaneous inhibition of these targets may provide several benefits for the treatment of cancer. In this work, we set up a design strategy including the assembly and integration of molecular fragments known to be important for binding to the Hsp90, PDHK1 and B-Raf targets, aided by molecular docking for the selection of a set of compounds potentially able to exert Hsp90-B-Raf-PDHK1 multi-target activities. The designed compounds were synthesized and experimentally validated in vitro. According to the in vitro assays, compounds 4 a , 4 d and 4 e potently inhibited Hsp90 and moderately inhibited the PDHK1 kinase. Finally, molecular dynamics simulations were performed to provide further insights into the structural basis of their multi-target activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号