首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late‐stage carboxylic acid directed C(sp3)? H oxidation. The synthesis requires only eight steps from norbornadiene.  相似文献   

2.
The first synthesis of hebelophyllene E is presented, along with assignment of its previously unknown relative configuration through synthesis of epi‐ent‐hebelophyllene E. Development of a catalytic enantioselective [2+2] cycloaddition of alkenes and allenoates provides access to the required chiral geminal dimethylcyclobutanes. Key to its success is the identification of a novel oxazaborolidine catalyst which promotes the cycloaddition in high enantioselectivities with good functional‐group tolerance (9 examples, up to 97:3 e.r.). Thus, a late‐stage cycloaddition using a fully functionalized alkene, followed by a diastereoselective reduction allows a concise entry to this class of natural products.  相似文献   

3.
The total synthesis of nyingchinoids A and B has been achieved through successive rearrangements of a 1,2‐dioxane intermediate that was assembled using a visible‐light photoredox‐catalysed aerobic [2+2+2] cycloaddition. Nyingchinoid D was synthesised with a competing [2+2] cycloaddition. Based on NMR data and biosynthetic speculation, we proposed a structure revision of the related natural product rasumatranin D, which was confirmed through total synthesis. Under photoredox conditions, we observed the conversion of a cyclobutane into a 1,2‐dioxane through retro‐[2+2] cycloaddition followed by aerobic [2+2+2] cycloaddition.  相似文献   

4.
We report a concise and versatile total synthesis of the diterpenoid (+)‐norcembrene 5 from simple building blocks. Ring‐closing metathesis and an auxiliary‐directed 1,4‐addition are the key steps of our synthetic route. During the synthesis, an unprecedented, highly oxidized pentacyclic structural motif was established from a furanocembranoid through transannular [4+2] cycloaddition.  相似文献   

5.
A method for the synthesis of phosphabenzenes under iron catalysis is described. Thus, the FeI2‐catalyzed [2+2+2] cycloaddition of diynes with phosphaalkynes in m‐xylene gave a variety of phosphabenzenes in good to high yields (up to 87 % yield).  相似文献   

6.
The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late‐stage carboxylic acid directed C(sp3) H oxidation. The synthesis requires only eight steps from norbornadiene.  相似文献   

7.
Total synthesis of (±)‐Englerin A has been achieved starting from γ,δ‐ynone 5 in 14 steps. The key feature of this synthesis is the highly efficient and stereoselective preparation of 8‐oxabicyclo[3.2.1]octane derivative 6 , a core skeleton of Englerin A, based on an inverse electron‐demand [3+2] cycloaddition reaction of the platinum‐containing carbonyl ylide, which was developed in our laboratory.  相似文献   

8.
We describe herein formal syntheses of the indole alkaloids cis‐trikentrin A and herbindole B from a common meso‐hydroquinone intermediate prepared by a ruthenium‐catalyzed [2+2+1+1] cycloaddition that has not been used previously in natural product synthesis. Key steps include a sterically demanding Buchwald–Hartwig amination as well as a unique C(sp3)?H amination/indole formation. Studies toward a selective desymmetrization of the meso‐hydroquinone are also reported.  相似文献   

9.
The tandem inter [4+2]/intra [3+2] cycloaddition of nitroalkenes in the bridged mode was applied to the stereoselective synthesis of β‐D ‐4‐amino‐2,4‐dideoxycarbagulose, a representative aminocarbasugar. The synthesis required only five steps from known materials and delivered the protected aminocarbasugar (−)‐ 20 in excellent yield (see Scheme 9). The success of the synthetic sequence relies on 1) the ability to incorporate O‐substituents at the nitroalkene moiety, 2) the identification of a suitably modified chiral dienophile, and in particular 3) the development of specific experimental conditions and protocols that allow for the formation and isolation of the highly sensitive nitroso acetals. The reduction of the C(1) carbonyl group of (+)‐ 19 gave unexpected stereoselectivity, which could be rationalized by a conformational inversion of the substrate (see Scheme 11).  相似文献   

10.
The total synthesis of (+)‐asteriscanolide is reported. The synthetic route features two key reactions: 1) the rhodium(I)‐catalyzed [(5+2)+1] cycloaddition of a chiral ene‐vinylcyclopropane (ene‐VCP) substrate to construct the [6.3.0] carbocyclic core with excellent asymmetric induction, and 2) an alkoxycarbonyl‐radical cyclization that builds the bridging butyrolactone ring with high efficiency. Other features of this synthetic route include the catalytic asymmetric alkynylation of an aldehyde to synthesize the chiral ene‐VCP substrate, a highly regioselective conversion of the [(5+2)+1] cycloadduct into its enol triflate, and the inversion of the inside–outside tricycle to the outside–outside structure by an ester‐reduction/elimination to enol‐ether/hydrogenation procedure. In addition, density functional theory (DFT) rationalization of the chiral induction of the [(5+2)+1] reaction and the diastereoselectivity of the radical annulation has been presented. Equally important is that we have also developed other routes to synthesize asteriscanolide using the rhodium(I)‐catalyzed [(5+2)+1] cycloaddition as the key step. Even though these routes failed to achieve the total synthesis, these experiments gave further useful information about the scope of the [(5+2)+1] reaction and paved the way for its future application in synthesis.  相似文献   

11.
Concise routes for the total and formal syntheses of the amathaspiramides were developed through a formal [3+2] cycloaddition between lithium(trimethylsilyl)diazomethane and α,β‐unsaturated esters. The effectiveness of this new cycloaddition for the construction of Δ2‐pyrazolines containing a α‐tert‐alkylamino carbon center and subsequent facile protonolytic N? N bond cleavage allows the synthesis of a key intermediate of the amathaspiramides and other α,α‐disubstituted amino acid derivatives.  相似文献   

12.
A highly enantio‐ and diastereoselective synthesis of 3‐aminocyclopenta[b]indoles has been developed through formal [3+2] cycloaddition reaction of enecarbamates and 3‐indolylmethanols. This transformation is catalyzed by a chiral phosphoric acid that achieves simultaneous activation of both partners of the cycloaddition. Mechanistic data are also presented that suggest that the reaction occurs through a stepwise pathway.  相似文献   

13.
A catalytic formal [5+2] cycloaddition approach to the diastereoselective synthesis of azepino[1,2‐a]indoles is reported. The reaction presumably proceeds through a Lewis acid catalyzed formal [2+2] cycloaddition of an alkene with an N‐indolyl alkylidene β‐amide ester to form a donor–acceptor cyclobutane intermediate, which subsequently undergoes an intramolecular ring‐opening cyclization. Azepine products are formed in up to 92 % yield with high degrees of diastereoselectivity (up to 34:1 d.r.).  相似文献   

14.
A short synthesis of ent‐hydromorphone has been achieved in twelve steps from β‐bromoethylbenzene. The key transformations involved the enzymatic dihydroxylation of the arene to the corresponding cis‐dihydrodiol, Mitsunobu coupling with the ring A fragment, oxidative dearomatization of the C3 phenol, and the subsequent [4+2] cycloaddition to form ring B of the morphinan. The synthesis was completed by intramolecular amination at C9.  相似文献   

15.
A highly efficient method for the synthesis of fluorine‐containing multisubstituted phenanthridines through Rh‐catalyzed alkyne [2+2+2] cycloaddition reactions has been developed. This method exhibits excellent functional‐group compatibility. When a bromodifluoromethyl group, rather than a trifluoromethyl group, was employed in the cycloaddition reaction, more‐complicated polycyclic compounds were obtained through tandem Rh‐catalyzed cycloaddition/C? H difluoromethylenation. This route provides convenient access to fluorine‐containing polycyclic compounds.  相似文献   

16.
CpCoI‐olefin‐phosphite and CpCoI‐bisphosphite complexes were systematically prepared and their reactivity in [2+2+2] cycloaddition reactions compared with highly active [CpCo(H2C?CHSiMe3)2] ( 1 ). Whereas 1 is an excellent precursor for the synthesis of [CpCo(olefin)(phosphite)] complexes ( 2 a – f ), [CpCo(phosphite)2] complexes ( 3 a – e ) were prepared photochemically from [CpCo(cod)]. The complexes were evaluated in the cyclotrimerization reaction of diynes with nitriles yielding pyridines. For [CpCo(olefin)(phosphite)], as well as some of the [CpCo(phosphite)2] complexes, reaction temperatures as low as 50 °C were sufficient to perform the cycloaddition reaction. A direct comparison showed that the order of reactivity for the complex ligands was olefin2>olefin/phosphite>phosphites2. The complexes with mixed ligands favorably combine reactivity and stability. Calculations on the ligand dissociation from [CpCo(olefin)(phosphite)] proved that the phosphite is dissociating before the olefin. [CpCo(H2C?CHSiMe3){P(OPh)3}] ( 2 a ) was investigated for the co‐cyclization of diynes and nitriles and found to be an efficient catalyst at rather mild temperatures.  相似文献   

17.
The enantioselective synthesis of completely ortho‐fused [9]‐ and [11]helicene‐like molecules has been achieved through a rhodium‐mediated, intramolecular, double [2+2+2] cycloaddition of phenol‐ or 2‐naphthol‐linked hexaynes. Crystal structures and photophysical properties of these [9]‐ and [11]helicene‐like molecules have also been disclosed.  相似文献   

18.
A new synthetic route to dihydrobiphenylenes has been developed. The process involves a mild RuII‐catalyzed [2+2+2] dimerization of ortho‐alkenylarylacetylenes or its more versatile variant, the Ru‐catalyzed [2+2+2] cycloaddition of ortho‐ethynylstyrenes with alkynes. Mechanistic aspects of this [2+2+2] cycloaddition are discussed.  相似文献   

19.
A procedure for the synthesis of three‐dimensional hexakisimidazolium cage compounds has been developed. The reaction of the trigonal trisimidazolium salts H3L(PF6)3, decorated with three N‐olefinic pendants, and silver oxide yielded trinuclear trisilver(I) hexacarbene molecular cylinders of the type [Ag3L2]3+ with the olefinic pendants from the two different tricarbene ligands arranged in three pairs. Subsequent UV irradiation gave three cyclobutane links between the two tris‐NHC ligands in three [2+2] cycloaddition reactions, thereby generating a three‐dimensional hexakis‐NHC ligand. Removal of the metal ions resulted in the formation of three‐dimensional hexakisimidazolium cages with a large internal cavity.  相似文献   

20.
The total syntheses of (+)‐polygalolide A and (+)‐polygalolide B have been completed by using a carbonyl ylide cycloaddition strategy. Three of the four stereocenters, including two consecutive tetrasubstituted carbon atoms at C2 and C8, were incorporated through internal asymmetric induction from the stereocenter at C7 by a [Rh2(OAc)4]‐catalyzed carbonyl ylide formation/intramolecular 1,3‐dipolar cycloaddition sequence. The arylmethylidene moiety of these natural products was successfully installed by a Mukaiyama aldol‐type reaction of a silyl enol ether with a dimethyl acetal, followed by elimination under basic conditions. We have also developed an alternative approach to the carbonyl ylide precursor based on a hetero‐Michael reaction. This approach requires 18 steps, and the natural products were obtained in 9.8 and 9.3 % overall yields. Comparison of specific rotations of the synthetic materials and natural products suggests that polygalolides are biosynthesized in nearly racemic forms through a [5+2] cycloaddition between a fructose‐derived oxypyrylium zwitterion with an isoprene derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号