首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have developed a methodology for the synthesis of pyridohelicenes and their analogues based on the Ni0‐, CoI‐ or RhI‐mediated intramolecular [2+2+2] cycloisomerisation of cyanodiynes. It allows for folding the linear precursors into the corresponding helical backbones comprising the newly formed pyridine unit in their central part. Along with racemic pyrido[n]helicenes (n=5,6,7) and their derivatives, both enantio‐ and diastereomerically pure pyrido[n]helicene‐like molecules (n=5,6) were prepared by employing the chiral substrate‐controlled cyclisation of the corresponding enantiopure cyanodiynes.  相似文献   

2.
Lihui Sun  Tong Wang  Song Ye 《中国化学》2012,30(1):190-194
In contrast with the reported phosphine‐ and DABCO‐catalyzed [3+2] and [2+2] annulation of allenoates with trifluoromethylketone, the [2+2+2] annulation of allenoates and two molecules of trifluoromethylketone was found under the condition of N‐heterocyclic carbene catalysis.  相似文献   

3.
An S‐shaped double helicene‐like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex‐catalyzed highly diastereo‐ and enantioselective intramolecular double [2+2+2] cycloaddition of a 2‐naphthol‐ and benzene‐linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S‐shaped double helicene‐like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S‐shaped double helicene‐like molecule forms a trimer through the multiple C?H???π and C?H???O interactions in the solid‐state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S‐shaped double helicene‐like molecule enhanced the chiroptical properties.  相似文献   

4.
Oxidative fusion reactions of ortho ‐phenylene‐bridged cyclic hexapyrroles and hexathiophenes furnished novel closed helicenes in a selective manner. X‐Ray diffraction analysis unambiguously revealed the structures to be a closed pentaaza[9]helicene, the longest azahelicene reported so far, and an unexpected double‐helical structure of hexathia[9]/[5]helicene, whose formation was assumed to result from multiple oxidative fusion along with a 1,2‐aryl shift. The pentaaza[9]helicene exhibited well‐defined emission with high fluorescence quantum yield (Φ F=0.31) among the known [9]helicenes. Chiral resolution of the racemic pentaaza[9]helicene and hexathia[9]/[5]helicene were achieved by chiral‐phase HPLC and the enantiomers were characterized by circular dichroism spectra and DFT calculations.  相似文献   

5.
The reactivity of Fischer alkenyl carbenes toward 8‐azaheptafulvenes is examined. Alkenyl carbenes react with 8‐azaheptafulvenes with complete regio‐ and stereoselectivity through formal [8+3] and [8+2] heterocyclization reactions, which show an unprecedented dependence on the Cβ substituent at the alkenyl carbene complex. Thus, the formal [8+3] heterocyclization reaction is completely favored in carbene complexes that bear a coordinating moiety to give tetrahydrocyclohepta[b]pyridin‐2‐ones. Otherwise, alkenyl carbenes that lack appropriate coordinating groups undergo a formal [8+2] cyclization with 8‐azaheptafulvenes to give compounds that bear a tetrahydroazaazulene structure. A likely mechanism for these reactions would follow well‐established models and would involve a 1,4‐addition/cyclization in the case of the [8+2] cyclization or a 1,2‐addition/[1,2] shift–metal‐promoted cyclization for the [8+3] reaction. The presence of a coordinating moiety in the carbene would favor the [1,2] metal shift through transition‐state stabilization to lead to the [8+3] product. All these processes provide an entry into the tetrahydroazaazulene and cycloheptapyridone frameworks present in the structure of biologically active molecules.  相似文献   

6.
A new short‐step synthesis of 8a‐azonia[6]helicene (1) and the novel dithieno derivatives ( 2 and 3 ) is described. Double photocyclization of 2,8‐distyrylquinolizinium salt (8) gave 1 in 35% yield. Similarly, 2,8‐bis[2‐(2‐thienyl)vinyl]‐ and 2,8‐bis[2‐(3‐thienyl)vinyl]‐quinolizinium salts ( 9 and 10 ) afforded new azonia[6]helicenes containing two thiophene rings at the ends of helix, that is 7a‐azonia‐3,12‐dithia[6]helicene (2) and 7a‐azonia‐1,14‐dithia[6]helicene (3) , in 43 and 35% yields, respectively. The total assignment of their 1H‐ and 13C‐nmr spectra was performed by utilizing two‐dimensional and NOE nmr spectroscopic methods.  相似文献   

7.
Herein we present the first hexapole [9]helicene ( H9H ). Co‐catalyzed [2+2+2] cyclotrimerization of a dinaphthopyrene (DNP) functionalized alkyne provides the hexaaryl benzene precursor 2 , which is transformed into H9H via a dehydrocyclization reaction. Formation of each embedded [9]helicene involves forging of a new C?C bond, which stitches together two [4]helicene subunits of the neighboring DNP blades, reminiscent of the initial method Martin developed for the preparation of [9]helicene in the 1960s. Single‐crystal X‐ray analysis of both 2 and H9H discloses their extremely distorted and crowded structural features. Chiral resolution, optical and electronic properties of H9H are also presented.  相似文献   

8.
Herein we present the first hexapole [9]helicene ( H9H ). Co‐catalyzed [2+2+2] cyclotrimerization of a dinaphthopyrene (DNP) functionalized alkyne provides the hexaaryl benzene precursor 2 , which is transformed into H9H via a dehydrocyclization reaction. Formation of each embedded [9]helicene involves forging of a new C?C bond, which stitches together two [4]helicene subunits of the neighboring DNP blades, reminiscent of the initial method Martin developed for the preparation of [9]helicene in the 1960s. Single‐crystal X‐ray analysis of both 2 and H9H discloses their extremely distorted and crowded structural features. Chiral resolution, optical and electronic properties of H9H are also presented.  相似文献   

9.
A single‐strand arylene–vinylene precursor containing four phenylene and three naphthylene units linked together with six vinylene spacers undergoes helical folding via sextuple photocyclization to give a [16]helicene core in a single step. The phenylene and naphthylene units are arranged in the precursor such that unfavorable side reactions (anthracene or benzoperylene formation) are avoided, and this is the key to the success of the one‐step synthesis of [16]helicene, which is the longest [n]helicene that has been synthesized to date.  相似文献   

10.
On irradiation (350 nm) in the presence of 2,3‐dimethylbuta‐1,3‐diene, benzoxepinone 2 and dioxepinone 3 were converted regio‐ and diastereoselectively to trans‐fused oxabicyclo[5.2.0]nonanones 5 and 9 , respectively.  相似文献   

11.
A new synthetic route to dihydrobiphenylenes has been developed. The process involves a mild RuII‐catalyzed [2+2+2] dimerization of ortho‐alkenylarylacetylenes or its more versatile variant, the Ru‐catalyzed [2+2+2] cycloaddition of ortho‐ethynylstyrenes with alkynes. Mechanistic aspects of this [2+2+2] cycloaddition are discussed.  相似文献   

12.
The regio‐ and absolute stereochemistry of (7S)‐N‐[4‐(3‐thienyl)tricyclo[4.2.1.02,5]non‐3‐en‐3‐ylcarbonyl]‐2,10‐camphorsultam tetrahydrofuran hemisolvate, C24H29NO3S2·0.5C4H8O, and (7S)‐N‐[4‐(4‐tolyl)tricyclo[4.2.1.02,5]non‐3‐en‐3‐ylcarbonyl]‐2,10‐camphorsultam, C27H33NO3S, have been established. One contains a half‐occupancy tetrahydrofuran solvent molecule located on a twofold axis and the other contains two crystallographically unique molecules which are nearly identical. The extended structures of both complexes can be explained via weak C—H...O interactions, which link the molecules together into two‐dimensional sheets in the ab plane for the thienyl complex and ultimately into a three‐dimensional structure for the tolyl derivative. The stereochemistry of both structures confirms that [2+2] cycloadditions of bicyclic alkenes and alkynes catalysed by ruthenium are exclusively exo.  相似文献   

13.
It has been established that a cationic rhodium(I)/H8‐binap complex catalyzes the [3+2+2] cycloaddition of 1,6‐diynes with cyclopropylideneacetamides to produce cycloheptadiene derivatives through cleavage of cyclopropane rings. In contrast, a cationic rhodium(I)/(S)‐binap complex catalyzes the enantioselective [2+2+2] cycloaddition of terminal alkynes, acetylenedicarboxylates, and cyclopropylideneacetamides to produce spiro‐cyclohexadiene derivatives which retain the cyclopropane rings.  相似文献   

14.
Pyrrolo[1,2‐a]indoles are privileged structural elements of many natural products and pharmaceuticals. An efficient one‐step process for their highly diastereo‐ and enantioselective synthesis, comprising a direct [3+2]‐cycloaddition, has been developed. A chiral BINOL‐derived phosphoric acid catalyzes the reaction of in situ‐generated 2‐methide‐2H‐indoles with 2‐vinylindoles, furnishing the target products incorporating three contiguous stereogenic centers as single diastereoisomers and with excellent yields and enantioselectivities.  相似文献   

15.
A highly enantio‐ and diastereoselective synthesis of 3‐aminocyclopenta[b]indoles has been developed through formal [3+2] cycloaddition reaction of enecarbamates and 3‐indolylmethanols. This transformation is catalyzed by a chiral phosphoric acid that achieves simultaneous activation of both partners of the cycloaddition. Mechanistic data are also presented that suggest that the reaction occurs through a stepwise pathway.  相似文献   

16.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

17.
The tandem inter [4+2]/intra [3+2] cycloaddition of nitroalkenes in the bridged mode was applied to the stereoselective synthesis of β‐D ‐4‐amino‐2,4‐dideoxycarbagulose, a representative aminocarbasugar. The synthesis required only five steps from known materials and delivered the protected aminocarbasugar (−)‐ 20 in excellent yield (see Scheme 9). The success of the synthetic sequence relies on 1) the ability to incorporate O‐substituents at the nitroalkene moiety, 2) the identification of a suitably modified chiral dienophile, and in particular 3) the development of specific experimental conditions and protocols that allow for the formation and isolation of the highly sensitive nitroso acetals. The reduction of the C(1) carbonyl group of (+)‐ 19 gave unexpected stereoselectivity, which could be rationalized by a conformational inversion of the substrate (see Scheme 11).  相似文献   

18.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

19.
A novel one‐pot [4+2]‐benzannulation approach to substituted carbazoles is accomplished by acid‐catalyzed C3‐propargylation of 2‐alkenyl/aryl indoles with 1‐aryl propargylic alcohols, followed by cycloisomerization. A variety of 2‐alkenylated indoles and 2‐aryl/heteroaryl indoles successfully participated in this tandem reaction with 1‐aryl/heteroaryl propargylic alcohols to provide diversely substituted and annulated carbazoles, as well as an aza[5]helicene.  相似文献   

20.
A short and concise synthesis of novel, chiral bicyclo[3.1.0]hex‐2‐ene amino acid derivatives 13 and 14 has been developed. The key step is a stereo‐ and regioselective allylic amination of exo‐ and endo‐methyl bicyclo[3.1.0]hex‐2‐ene‐6‐carboxylates 8 and 9 , which were prepared from 7,7‐dichlorobicyclo[3.2.0]hept‐2‐en‐6‐one ( 1 ). These amino acid derivatives are useful building blocks in medicinal chemistry and can be prepared as chiral compounds by using either (+)‐ 1 or (?)‐ 1 as starting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号