首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A stochastic approach based on the Master equation is proposed to describe the process of formation and growth of car clusters in traffic flow in analogy to usual aggregation phenomena such as the formation of liquid droplets in supersaturated vapour. By this method a coexistence of many clusters on a one-lane circular road has been investigated. Analytical equations have been derived for calculation of the stationary cluster distribution and related physical quantities of an infinitely large system of interacting cars. If the probability per time (or p) to decelerate a car without an obvious reason tends to zero in an infinitely large system, our multi-cluster model behaves essentially in the same way as a one-cluster model studied before. In particular, there are three different regimes of traffic flow (free jet of cars, coexisting phase of jams and isolated cars, highly viscous heavy traffic) and two phase transitions between them. At finite values of p the behaviour is qualitatively different, i.e., there is no sharp phase transition between the free jet of cars and the coexisting phase. Nevertheless, a jump-like phase transition between the coexisting phase and the highly viscous heavy traffic takes place both at and at a finite p. Monte-Carlo simulations have been performed for finite roads showing a time evolution of the system into the stationary state. In distinction to the one-cluster model, a remarkable increasing of the average flux has been detected at certain densities of cars due to finite-size effects. Received 17 September 1999  相似文献   

2.
The effect of real-time information on the traffic flows of the crossing roads is studied by simulations based on a cellular automaton model. At the intersection, drivers have to enter a road of a shorter trip-time, by making a turn if necessary, as indicated on the information board. Dynamics of the traffic are expressed as a return map in the density-flow space. The traffic flow is classified into six phases, as a function of the car density. It is found that such a behavior of drivers induces too much concentration of cars on one road and, as a result, causes oscillation of the flow and the density of cars on both roads. The oscillation usually results in a reduced total flow, except for the cases of high car density.  相似文献   

3.
4.
It is suggested that the question of existence of a jamming phase transition in a broad class of single-lane cellular-automaton traffic models may be studied using a correspondence to the asymmetric chipping model. In models where such correspondence is applicable, jamming phase transition does not take place. Rather, the system exhibits a smooth crossover between free-flow and jammed states, as the car density is increased.  相似文献   

5.
高速车随机延迟逐步加速交通流元胞自动机模型   总被引:9,自引:0,他引:9       下载免费PDF全文
汪秉宏  王雷  许伯铭  胡斑比 《物理学报》2000,49(10):1926-1932
提出介于Nagel-Schreckenberg(NS)模型和Fukui-Ishibashi(FI)模型之间的一种新的一维交通流元胞自动机模型. 此模型采用NS模型中的车辆逐步加速方式,和FI模型中的仅最大速车可随机减速的车辆延迟方式.证明新模型的基本图,即车流渐近稳态的平均速度与道路上的车辆密度之间的函数关系与FI模型的完全相同.这也就是说,只允许最高速车辆可发生延迟的FI交通流模型,如果将其突然无限制加速方式(车辆可在一个时步内从零速加速到最高速限M或车头距离所允许的最大速度),改变为车辆的逐步有限加速 关键词: 交通流 元胞自动机模型 相变基本图 Nagel-Schreckenberg模型 Fukui-Ishibashi模型  相似文献   

6.
When cars are oncoming in the opposite lane of a road, a driver is able to judge whether his/her car can cross the road at an intersection without a collision with the oncoming cars. We developed a model for the human judgment used to cross a road between oncoming objects. In the model, in order to make the judgment to cross the road, the human visual system compares the time interval it takes for an oncoming object to pass the observer with the time interval it takes for the observer to cross the road. We conducted a psychophysical experiment to test the model prediction. The result showed that human performance is in good agreement with the theoretical consequence provided by the model, suggesting that the human visual system uses not only the visually timed information of the approaching object but also the timed information of self-action for the judgment about crossing the road.  相似文献   

7.
We present a bi-directional cellular automaton (CA) model for facing traffic of pedestrians on a wide passage. The excluded-volume effect and bi-directionality of facing traffic are taken into account. The CA model is not stochastic but deterministic. We study the jamming and freezing transitions when pedestrian density increases. We show that the dynamical phase transitions occur at three stages with increasing density. There exist four traffic states: the free traffic, jammed traffic 1, jammed traffic 2, and frozen state. At the frozen state, all pedestrians stop by preventing from going ahead each other. At three transitions, the pedestrian flow changes from the free traffic through the jammed traffic 1 and jammed traffic 2, to the frozen state.  相似文献   

8.
《Physica A》1996,231(4):515-533
We carried out computer simulations to study the green wave model (GWM), the parallel updating version of the two-dimensional traffic model of Biham et al. The better convergence properties of the GWM together with a multi-spin coding technique enabled us to extrapolate to the infinite system size which indicates a nonzero density transition from the free flow to the congested state (jamming transition). In spite of the sudden change in the symmetry of the correlation function at the transition point, finite size scaling and temporal scaling seems to hold, at least above the threshold density. There is a second transition point at a density deep in the congested phase where the geometry of the cluster of jammed cars changes from linear to branched: Just at this transition point this cluster has fractal geometry with dimension 1.58. The jamming transition is also described within the mean field approach.  相似文献   

9.
We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N+1 cars (numbered from 0 to N) moves along a one-lane road “in formation” at a constant velocity and with a unit distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars. This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the information it receives. The question is: What happens when due to an external influence—a traffic light turning green—the ‘zero’th’ car (the “leader”) accelerates?As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for these algorithms, that is: how does the choice of parameters influence the performance.  相似文献   

10.
Traffic flow modeling is an elusive example for the emergence of complexity in dynamical systems of interacting objects. In this work, we introduce an extension of the Nagel-Schreckenberg (NaSch) model of vehicle traffic flow that takes into account a defensive driver’s reaction. Such a mechanism acts as an additional nearest-neighbor coupling. The defensive reaction dynamical rule consists in reducing the driver’s velocity in response to deceleration of the vehicle immediately in front of it whenever the distance is smaller than a security minimum. This new mechanism, when associated with the random deceleration rule due to fluctuations, considerably reduces the mean velocity by adjusting the distance between the vehicles. It also produces the emergence of bottlenecks along the road on which the velocity is much lower than the road mean velocity. Besides the two standard phases of the NaSch model corresponding to the free flow and jammed flow, the present model also exhibits an intermediate phase on which these two flow regimes coexist, as it indeed occurs in real traffics. These findings are consistent with empirical results as well as with the general three-phase traffic theory.  相似文献   

11.
Traffic flows on crossing roads with an information board installed at the intersection have been simulated by a cellular automaton model. In the model, drivers have to enter the road with a shorter trip-time indicated on the information board, by making a turn at the intersection if necessary. The movement of drivers induces various traffic states, which are classified into six phases as a function of the car density. The dynamics of the traffic is expressed as the return map in the density–flow space, and analyzed on the basis of the car configuration on the roads.  相似文献   

12.
In this paper we numerically study the probability Pac of the occurrence of traffic accidents in the Nagel-Schreckenberg (NS) model with velocity-dependent randomization (VDR). Numerical results show that there is a critical density over which car accidents occur, but below which no car accidents happen. Different from the accident probability in the NS model, the accident probability in the VDR model monotonously decreases with increase of car density above the critical density. The value of the accident probability is only determined by the stochastic noise and the number of cars on road. In the stochastic VDR model with the speed limit vmax=1, no critical density exists and car accidents happen in the whole density region. The braking probabilities of standing cars and moving cars have different influences on the accident probability. A mean-field theory reveals that the accident probability is proportional to the mean density of “go and stop” wave per time step. Theoretical analyses give excellent agreement with numerical results in the VDR model.  相似文献   

13.
We introduce and study a deterministic lattice model describing the motion of an infinite system of oppositely charged particles under the action of a constant electric field. As an application this model represents a traffic flow of cars moving in opposite directions along a narrow road. Our main results concern the Fundamental diagram of the system describing the dependence of average particle velocities on their densities and the Phase diagram describing the partition of the space of particle configurations into regions having different qualitative properties, which we identify with free, jammed and hysteresis phases. This research has been partially supported by Russian Foundation for Fundamental Research, CRDF and French Ministry of Education grants.  相似文献   

14.
郭四玲  韦艳芳  薛郁 《物理学报》2006,55(7):3336-3342
系统地研究 VDR模型和T2模型在不同车流密度时车辆位置的相关性. 通过VDR模型、BJH模型和T2模型的序参量计算,确定在这三个模型中车流从自由流动到阻塞的相变特性,结果发现引入慢启动规则后,在不同的延迟概率和最大速度情况下,将引起交通相变特性的改变. 关键词: 交通流 元胞自动机 相关函数 序参量  相似文献   

15.
谢东繁  高自友  赵小梅 《中国物理 B》2010,19(8):80515-080515
<正>The effect of cars with intelligent transportation systems(ITSs) on traffic flow near an on-ramp is investigated by car-following simulations.By numerical simulations,the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs.The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp.The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS.Interestingly,the congested regions of the main road disappear completely when the proportion is larger than a critical value.Further investigation shows that the capacity of the on-ramp system can be promoted by 13%by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.  相似文献   

16.
We present some long time limit properties of a cellular automaton that models traffic of cars on a (infinite) two-lane road. This model, called TL184, is a natural generalization of the cellular automaton classified as 184 by Wolfram (to be abbreviated by CA184) and studied before as a model for one-lane traffic. TL184 models cars' motions on each lane by particles that interact via the CA184 rules, and cars' lane changes by a possibility for particles to flip from one CA184 to another. We calculate the infinite-time limit of the particle current in TL184, starting from a translation invariant measure, and use this result to show how the possibility of lane changes may enhance the current of cars in TL184 compared to that in a corresponding model of two non-interacting one-lane roads. We provide examples which demonstrate that even though the rules that regulate lane changes are completely symmetric, the system does not evolve to an equipartition of cars among both lanes from a given initially asymmetric distribution; moreover, the asymptotic car velocities and currents may be different on different lanes. We also show that, for a particular class of initial distributions, the asymptotic car density on a lane may be a non-monotonic function of the initial car density on this lane. Finally, we derive the current-density relation for an extended continuous-time version of TL184 with asymmetric lane-changing rules.  相似文献   

17.
We study the traffic states and jamming transitions induced by a bus (slow car) in a two-lane traffic of cars. We use the dynamic model which is an extended one of the optimal velocity model to take into account the lane changing. The fundamental (flow-density) diagram is presented. The fundamental diagram changes highly by introducing a bus on a two-lane roadway. It is found that there are the six distinct states for the two-lane traffic flow including a bus. The spatio-temporal patterns are presented for the distinct traffic states. The dynamical state of traffic changes with density of cars. It is shown that the dynamical transitions among the distinct traffic states occur at some values of density. The phase diagram (region map) is shown for the two-lane traffic flow including a bus.  相似文献   

18.
陈永  张薇 《物理学报》2020,(6):146-158
为研究道路交通中的高速跟驰物理现象,针对高速跟驰车辆特点,综合考虑了驾驶员换道决策行为以及随机慢化等因素,结合前景理论等方法,提出了一种用于模拟道路交通流中高速跟驰物理现象的动力学模型(简称HCCA模型).通过计算机数值模拟,研究了高速跟驰交通流物理现象演化机理及高速跟驰特性.结果表明:与对称的双车道元胞自动机动力学模型相比,本文建立的HCCA动力学模型能够再现道路高速跟驰物理现象,并得到了道路小间距高速跟驰率超过7%的结果与实测结果相符合,最后模拟得到了丰富的交通物理现象,再现了自由流、同步流及运动阻塞等复杂交通物理现象.  相似文献   

19.
Non-lane-based full velocity difference car following model   总被引:1,自引:0,他引:1  
Sheng Jin  Pengfei Tao  Pingfan Li 《Physica A》2010,389(21):4654-157
In order to describe car following behavior in real world, this paper presents a non-lane-based car following model by incorporating the effects of the lane width in traffic. The stability condition of the model is obtained by using the linear stability theory. And numerical simulation is carried out to validate the analytic results. The property of the model is investigated, and it is found that the proposed model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion. The results implied that incorporating the lane width effects in car following model not only stabilize traffic flow and suppress the traffic jam, but also lower critical headway and increase capacity. Thus, the lateral separation effects greatly enhance the realism of car following models.  相似文献   

20.
Based on the property of heterogeneous traffic flow, we in this Letter present a new car-following model. Applying the relationship between the micro and macro variables, a new dynamic model for heterogeneous traffic flow is obtained. The fundamental diagram and the jam density of the heterogeneous traffic flow consisting of bus and car are studied under three different conditions: (1) without any restrictions, (2) under the action of the traffic control policy that restrains some private cars and (3) using bus to replace the private cars restrained by the traffic control policy. The numerical results show that our model can describe some qualitative properties of the heterogeneous traffic flow consisting of bus and car, which verifies that our model is reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号