首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface modification of biomaterials is a way to tailor cell responses whilst retaining the bulk properties. In this work, chitosan membranes were prepared by solvent casting and treated with nitrogen or argon plasma at 20 W for 10-40 min. AFM indicated an increase in the surface roughness as a result of the ongoing etching process. XPS and contact angle measurements showed different surface elemental compositions and higher surface free energy. The MTS test and direct contact assays with an L929 fibroblast cell line indicated that the plasma treatment improved the cell adhesion and proliferation. Overall, the results demonstrated that such plasma treatments could significantly improve the biocompatibility of chitosan membranes and thus improve their potential in wound dressings and tissue engineering applications.  相似文献   

2.
The natural rubber latex (NRL) film taken from medical surgical gloves was surface-modified with a dielectric barrier discharge (DBD) plasma treatment under an air environment. The results showed that surface hydrophilicity of the NRL film increased after the plasma treatment due to the presence of oxygen-containing polar groups on the plasma-treated surface. An increase in plasma treatment time increased the surface roughness of the NRL film, and eventually decreased the mechanical properties. From the obtained results, the optimum plasma treatment time of 20?s was chosen. After immersion in a chitosan solution, the amount of chitosan deposited on the plasma-treated NRL film increased with increasing chitosan concentrations. The chitosan coating smoothed the surface of the plasma-treated NRL film and also improved the mechanical properties. The highest antibacterial activities of the chitosan-coated DBD plasma-treated NRL film against both Staphylococcus aureus and Escherichia coli were achieved when a 2?%(w/v) chitosan solution was used for the coating.  相似文献   

3.
A low-energy Ar+ ion beam was used to modify the surface of a polyetheretherketone (PEEK) film. The modification reaction proceeded with or without oxygen gas injected during the irradiation. The surface functional groups of the modified PEEK were confirmed with X-ray photoelectron spectroscopy as increasing various oxygen-containing functional groups. The concentration of the functional groups varied rapidly with the irradiation time, reached a maximum value, and then slowly decreased. The surface morphology of PEEK was substantially changed by ion-beam irradiation. Surface smoothening occurred so that the surface roughness reached almost constant value after some irradiation time. The incorporation of functional groups on the PEEK surface and the surface topology change had opposite effects on the adhesion strength between PEEK and copper. Dominance of the former was evident because the lap-shear strength initially increased with the irradiation. The special surface features significantly enhanced the adhesion strength between the evaporated copper layer and the modified PEEK surface. However, the decrease in the surface roughness with a long time irradiation implies a decrease in adhesion strength due to a smaller contact area, and the shear strength due to topology change also slowly decreased after a long time irradiation.  相似文献   

4.
A plasma process sequence has been developed to prepare chemical micropatterns on polymeric biomaterial surfaces. These patterns induce a guided localized cell layover at microscopic dimension. Two subsequent plasma steps are applied. In the first functionalization step a microwave ammonia plasma introduces amino groups to obtain areas for very good cell adhesion; the second passivation step combines pattern generation and creation of cell repelling areas. This downstream microwave hydrogen plasma process removes functional groups and changes the linkages of polymer chains at the outermost surfaces. Similar results have been obtained on different polymers including polystyrene (PS), polyhydroxyethylmethacrylate (PHEMA), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polyethylenenaphthalate (PEN). Such a rather universal chemical structuring process could widen the availability of biomaterials with specific surface preparations.  相似文献   

5.
Polyether ether ketone (PEEK) is a promising material for the encapsulation of electronic components for medical implants but a strong and hermetic joining technology is required. Autohesion is a self‐bonding method that avoids the need for adhesives. The strengths of autohesive joins using amorphous and semi‐crystalline PEEK films after surface activation using RF plasma were compared. Both types of PEEK films showed successful autohesion after activation with the bond strength of the amorphous sample being twice as high as the bond strength of the semi‐crystalline sample. Plasma treatment increased the autohesion strength of PEEK with no observed change in surface roughness (as measured by profilometer). The water contact angle was reduced by the treatment. X‐ray photoelectron spectroscopy (XPS) was carried out to determine surface chemistry. In the case of the semi‐crystalline surface, plasma treatment increased the relative percentage of C? O functional groups compared to the untreated surface. For treated surfaces nitrogen concentration correlated positively with bond strength while oxygen concentration correlated negatively with the semi‐crystalline PEEK samples and positively with the amorphous PEEK samples. The oxygen groups most likely are formed after the treatment by ambient oxidation are not conducive to bond formation, possibly because of the quenching of radicals that would otherwise form links. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Summary. The polyamide 12 foil with sufficient surface and adhesive properties to other substrates can be prepared by discharge plasma modification. For improvement of bonding and printing of polymer a surface barrier discharge plasma in N2 and O2 as well as a radio-frequency discharge plasma in air has been studied. A significant increase in surface energy of the polymer as well as in strength of adhesive joint to more polar polymer was found. The chemical changes of PA 12 modified by plasma were analyzed using fourier transform infra red – attenuated total reflection (FTIR–ATR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurements. The observed changes of surface properties of the polymer due to aging were not important.  相似文献   

7.
Surface properties of composites containing chitosan (Ch) with poly(N-vinylpyrrolidone) (PVP) and montmorillonite (MMT) additives were investigated by contact angle measurements, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile tests. Composites were obtained by drop casting suspensions of montmorillonite (1 wt % relative to chitosan) and polymer (1 wt %) in 0.1 mol/dm3 acetic acid. Contact angle measurements for diiodomethane (D) and glycerol (G) on the surfaces of the chitosan films, PVP and their composite films were made; surface free energies were also calculated. It was found that the PVP/MMT or Ch/PVP/MMT blend surface is enriched with a high surface energy component, i.e., polyvinylpyrrolidone. The roughness of chitosan composites increases after the addition of montmorillonite; this may indicate an increase in the heterogeneity of this composition in comparison to other compositions. The TGA thermograms and mass loss percentages at different decomposition temperatures showed that the thermal stability of the binary composite slightly increases upon the addition of polyvinylpyrrolidone. The mechanical properties such as tensile strength and Young modulus depend on the composition and varied non-uniformly.  相似文献   

8.
The polyamide 12 foil with sufficient surface and adhesive properties to other substrates can be prepared by discharge plasma modification. For improvement of bonding and printing of polymer a surface barrier discharge plasma in N2 and O2 as well as a radio-frequency discharge plasma in air has been studied. A significant increase in surface energy of the polymer as well as in strength of adhesive joint to more polar polymer was found. The chemical changes of PA 12 modified by plasma were analyzed using fourier transform infra red – attenuated total reflection (FTIR–ATR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurements. The observed changes of surface properties of the polymer due to aging were not important.  相似文献   

9.
Here we have demonstrated that radio frequency plasma and ultraviolet-ozone (UVO) surface modifications are effective treatments for enabling the thermal bonding of polymeric microfluidic chips at temperatures below the T(g) (glass transition temperature) of the polymer. The effects of UVO and plasma treatments on the surface properties of a cyclic polyolefin and polystyrene were examined with X-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM) surface roughness measurements and surface adhesion measurements with AFM force-distance data. Three-point bending tests using a dynamic mechanical analyzer (DMA) were used to characterize the bond strength of thermally sealed polymer parts and the cross-sections of the bonded microchannels were evaluated with scanning electron microscopy (SEM). The experimental results demonstrated that plasma and UVO surface treatments cause changes in the chemical and physical characteristics of the polymer surfaces, resulting in a decrease in T(g) at the surface, and thus allowing the microfluidic chips to be effectively bonded at temperatures lower than the T(g) of the bulk polymer without losing the intended channel geometry.  相似文献   

10.
Molecular level studies of the structure and mechanical properties of polymer surfaces have been carried out by sum frequency generation (SFG) surface vibrational spectroscopy and atomic force microscopy (AFM). The surfaces of different grades of polyethylene and polypropylene have been characterized-including during the glass transition and when mechanically stretched. Copolymers that have hard and soft segments with different glass transition temperatures show phase separation, an effect of hydrogen bonding between the hard and soft segments, that influences their adhesive and friction properties. AFM and SFG show that low surface energy additives migrate to the surface and alter the surface mechanical properties. Polymers, where the chemical nature of the end groups is different from the backbone, show surface segregation of the hydrophobic part of the chain in air and the hydrophilic part in water. Likewise, in miscible polymer blends, surface segregation of the more hydrophobic component in air and the more hydrophilic component in water is observed. This area of surface science requires increased attention because of the predominance of polymers as structural materials and as biomaterials.  相似文献   

11.
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.  相似文献   

12.
In this work, ozone modification method and air‐oxidationwere used for the surface treatment of polyacrylonitrile(PAN)‐based carbon fiber. The surface characteristics of carbon fibers were characterized by XPS. The interfacial properties of carbon fiber‐reinforced (polyetheretherketone) PEEK (CF/PEEK) composites were investigated by means of the single fiber pull‐out tests. As a result, it was found that IFSS (interfacial shear strength) values of the composites with ozone‐treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that ozone treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibers on the tribological properties of CF/PEEKcomposites was comparativelyinvestigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PEEK matrix. Thus the wear resistance was significantly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The mechanical, thermal and surface properties of chitosan and chitosan containing keratin hydrolysates have been studied and the influence of UV irradiation on these properties has been compared. The surface properties of chitosan films containing 5%, 15% and 30% of keratin hydrolysate before and after UV irradiation (λ = 254 nm) were investigated by means of contact angle measurements allowing the calculation of surface free energy. The chemical and structural changes during UV irradiation were studied by UV-vis and FTIR-ATR spectroscopy.The changes in mechanical properties such as breaking strength, percentage elongation and Young’s modulus have been investigated. The results have shown that the mechanical properties of the chitosan/keratin films were greatly affected by UV irradiation, but the level of the changes of these properties was smaller in the blend than in pure chitosan and strongly dependent on the time of irradiation and composition of the samples. The contact angle and the surface free energy were altered by UV irradiation, which indicates photooxidation and an increase of polarity of specimens. The range of these changes point to greater susceptibility of chitosan to photooxidation in the presence of keratin.  相似文献   

14.
Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of postoperative epithelial-mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 3-methacryloxypropyl tris(trimethylsiloxy)silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α-smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO.  相似文献   

15.
Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy and the mechanical performance was investigated by a tensile strength test. The tensile strength of HA/PEEK composites reaches an optimal 108 MPa at 6.1% HA content. The composites with HA content below 17.4% exhibit a plastic break mode, while a brittle break mode above 17.4%. The results exhibit that the strong bonding between hydroxyapatite fillers and PEEK matrix has been achieved. And it was proved that this strong bonding may be mainly attributed to the physical factors, such as mechanical interlock between PEEK molecules and HA surface. The study clearly demonstrates that in situ synthesized HA/PEEK composite materials have the potential for use as an alternative material for hard tissue replacement.  相似文献   

16.
Polyethyleneterephtalate (PET) and polytetrafluorethylene (PTFE) foils were modified by plasma discharge. The effect of plasma modification on polymer surface wettability and on properties of gold coatings were studied as a function of time from plasma exposure (aging time) and polymer substrate temperature. Thickness, sheet resistance, and surface topology of gold layers were studied. Aging of the plasma‐exposed samples is accompanied by increase in contact angle, which is explained by rearrangement of the polymer segments in the polymer surface monolayer, and a decrease in the concentration of polar groups. The aging also leads to a decline in surface roughness Ra measured by atomic force microscopy (AFM). Under deposition conditions, comparable thicknesses of deposited Au layers were prepared on pristine PET and plasma‐treated PET and PTFE samples. The thinnest Au layers were evaporated onto pristine PTFE. The sheet resistance decreases with increasing thickness of Au layer. Plasma treatment leads to an increase of PTFE surface roughness, which becomes even more pronounced after Au deposition. A higher roughness shows that the PET samples are deposited with the Au layer at temperatures above the glassy transition temperature Tg. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The influence of plasma treatment of polycarbonate (PC) substrates on the morphological, electrical, and adhesion properties of deposited amorphous transparent indium zinc oxide (IZO) by direct current magnetron sputtering was investigated by analyzing atomic force microscopy, contact angles, Hall, and nano‐scratch measurements. The surfaces of PC substrates were performed by plasma treatment at various processing times in Ar/O2 mix atmosphere. The atomic force microscopy images indicated that the microstructure of the substrates considerably influenced the surface morphology of deposited IZO films, and the least surface roughness of IZO was obtained after 5‐s plasma treatment. The IZO film deposited on PC with 5‐s plasma treatment presented an improved electrical conductivity and thermal stability after annealing at 120 °C in air, whereas the significant decrease in carrier concentration and increase in resistivity with extending plasma treatment time were observed, which was attributed to the elevated oxygen adsorption during annealing for a loosely packed structure. Moreover, the adhesion properties of IZO films with PC substrates decreased after 30‐s plasma treatment because of the significant difference on the surface polarity between the PC and thin films and the increased roughness caused by plasma etching. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
成功制备了光交联壳聚糖膜,并用傅立叶红外光谱(FTIR)和扫描电子显微镜(SEM)方法对其结构进行了表征,并测试了其力学性能。结果表明:光交联作用明显提高了膜的抗张强度和抗水性,并有效地降低了溶菌酶对其降解速率。该光交联膜有望用作可控降解生物医用材料。  相似文献   

19.
本文以聚醚醚酮(PEEK)和聚醚砜(PES)齐聚物为原料,通过溶液缩聚法制备PEEK-PES嵌段共聚物,并用DSC、TGA、WAXD和动态粘弹谱等手段对其相容性、结晶行为、动态力学性能和热性能进行了研究.结果表明,嵌段共聚物在PEEK链段Mn=1×104,PES链段Mn)=3500~250(PES含量为25.0%~2.9%)组成范围内不产生微相分离,保持了结晶性能,其玻璃化转变温度比纯PEEK提高将近20℃,并具有较好的高温力学性能.  相似文献   

20.
The surface of a biomaterial reacts in contact with biological fluids. Hydrogels are used to prepare biomaterials. The surface roughness of materials can be explored by several techniques. However, when considering hydrogels, the surface examined in the dry state does not reflect the final conformation. How the surface roughness is affected by swelling has been little explored by quantitative methods. We have evaluated the surface roughness of poly(2-hydroxyethyl methacrylate) (i.e., pHEMA) by image analysis. Images of disks, prepared from linear pHEMA, were obtained on a light microscope after various incubation times in saline. Fractal texture analysis was done on images to determine the fractal dimension D. In this study, D exhibited a significant decrease during swelling and was highly correlated with the swelling ratio (r2 = 0.994, p < 0.00001). Water uptake by the surface of the polymer affected the surface roughness. Image analysis using fractal algorithms appears to be the most interesting technique for the quantitative exploration of surfaces of hydrated materials that cannot be measured by conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号